Skip to main content

Realtime Surveying in Close Range Area with Inertial Navigation Systems and Optical Target Tracking Techniques

  • Conference paper
  • 194 Accesses

Summary

Realtime dynamic surveying methods on construction sites are treated in this paper. With the development of an optoelectronic measurement system the positioning of construction machines becomes possible. The measurement system is realized by the combination of realtime cameras which are equipped with position sensitive devices and classical photogrammetric approaches. A target tracking theodolite with automatic angle measurement capability is used for dynamic positioning of slowly moving objects. For tunneling and pipe jacking techniques a measurement methodology is proposed to determine position and orientation with an inertial measurement system using a special step technique. This technique provides a refractionless measurement tool for bad visible conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baumann, H.: Fehleranalyse und Simulation eines Trägheitsnavigationssystem mit fahrzeugfesten Sensoren. Dissertation, Technische Universität Braunschweig, 1976.

    Google Scholar 

  • Bayer, G.: Motorized Electronic Theodolite — High Precision Measurement Robots for Surveying. Proc. of the International Workshop “High Precision Navigation”, Stuttgart, May 17th–20th, 1988.

    Google Scholar 

  • Britting, K.: Inertial Navigation Systems Analysis, New York, John Wiley & Sons, 1971.

    Google Scholar 

  • Czommer, R.: Arbeits- und Ergebnisbericht 1984–1986 des Sonderforschungs-bereichs 228 “Hochgenaue Navigation”, Teilprojekt E3 “Inertialtechnik im Nahbereich”.

    Google Scholar 

  • Hiller, M.: Mechanische Systeme, Springer Verlag, Berlin 1983

    Google Scholar 

  • Joos, D. K.: Comparison of Typical Gyro Errors for Strapdown Applications, Symposium über Kreiseltechnik, Stuttgart, 1977.

    Google Scholar 

  • Krzystek, P.: High Precision Surveying of Moving Objects by Electronic Cameras. Proc. of the International Workshop “High Precision Navigation”, Stuttgart, May 17th–20th, 1988.

    Google Scholar 

  • Magnus, K.: Grundlagen der technischen Mechanik, Stuttgart, 1974

    Google Scholar 

  • Magnus, K.: Kreisel: Theorie und Anwendungen, Berlin, Springer, 1971.

    Google Scholar 

  • Möhlenbrink, W.: Abschlußbericht zum Einsatz von Positionssensoren zur Ver-messung von Rohrvorpressungen, Forschungsgesellschaft für geodätische Meß- und Rechentechnik, GmbH, Stuttgart 1984 (unveröffentlicht).

    Google Scholar 

  • Möhlenbrink, W.: Nonlinearities in the Dynamic Model of Inertial Sensors, Third International Symposium on Inertial Technology for Surveying and Geodesy, Banff, Canada, September 16–20, 1985.

    Google Scholar 

  • Möhlenbrink, W.: Drift Efects in Inertial Measurement Systems (Resulting from Nonlinear Terms in the Equations of Motions), Proceedings: Inertial, Doppler and GPS Measurements for National and Engineering Surveys, München, 1985.

    Google Scholar 

  • Oppelt, W.: Kleines Handbuch technischer Regel Vorgänge, Weinheim Verlag Chemie GmbH, 1972.

    Google Scholar 

  • Sauer, R., Szabo, I.: Mathematische Hilfsmittel des Ingenieurs, Teil I, Berlin, Springer, 1967.

    Google Scholar 

  • Savage, P. G.: Strapdown Sensors, AGARD Lecture Series No. 95, “Strapdown Inertial Systems”, 1978.

    Google Scholar 

  • Savage, P. G.: Strapdown System Algorithmus, AGARD Lecture Series No. 133, “Advances in Strapdown Inertial Systems, 1984.

    Google Scholar 

  • Schöne, A.: Simulation technischer Systeme, Band I, Carl Hanser Verlag, München, 1974.

    Google Scholar 

  • Stieler, B., Winter, H.: Gyroscopic Instruments and their Application to Flight Testing, Agardograph, No. 160, Vol. 15, 1983.

    Google Scholar 

  • Welsch, D.: Aktions-Reaktions-Analyse zur objektorientierten Verarbeitung von Meßdaten statischer und dynamischer Vorgänge an Bauwerken. Dissertation Universität Stuttgart, eingereicht 1988.

    Google Scholar 

  • Wetzig, V.: Ermittlung der Richtungsreferenz im Strapdown-System, Vortrag CCG, Braunschweig, 1985.

    Google Scholar 

  • Wittenburg, J.: Dynamics of Systems of Rigid Bodies, Teubner Verlag, Stuttgart, 1987.

    Google Scholar 

  • Wiegner, S.: Fehleranalyse und Simulation eines Proportional-Wendekreisels für die Strapdown-Anwendung in einem Inertialnavigationssystem. Selbständige Geodät. Arbeit am IAGB, Stuttgart, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Möhlenbrink, W. (1989). Realtime Surveying in Close Range Area with Inertial Navigation Systems and Optical Target Tracking Techniques. In: Linkwitz, K., Hangleiter, U. (eds) High Precision Navigation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74585-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74585-0_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74587-4

  • Online ISBN: 978-3-642-74585-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics