Skip to main content

Geodetic Positioning by Inertial and Satellite Systems: An Overview

  • Conference paper
High Precision Navigation

Summary

Once satellite and inertial systems are used for geodetic positioning they offer mainly the advantage of online coordination in geometry and gravity space as well as the unnecessary direct line-of-sight. Here their system analysis is based on the threedimensional network point of view for satellite systems, e.g. GPS or GLONASS, and the traverse network philosophy for inertial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Budde, K. (1988): Adjusting large threedimensional networks: strategies and computations. Submitted Paper, Third SIAM Conference on Applied Linear Algebra, Madison, May 23–26.

    Google Scholar 

  • Delikaraoglou, D. (1985): Estimability analysis of free networks of differential range observations to GPS satellites, in: Optimization and Design of Geodetic Networks, ed. E.W. Grafarend and F. Sanso, Springer-Verlag, p. 196–220, Berlin — Heidelberg — New York — Tokyo 1985.

    Google Scholar 

  • Eren, K. (1987): Geodetic network adjustment using GPS triple difference observations and a priori stochastic information. Technical Report No. 1, Institute of Geodesy, University of Stuttgart

    Google Scholar 

  • Grafarend, E. (1981): From kinematical geodesy to inertial positioning. Bulletin géodésique 55 (1981) 286–299.

    Article  Google Scholar 

  • Grafarend, E. and W. Lindlohr (1988): World: A multipurpose GPS-network computer package. Proceedings, GPS-Workshop, ed. E. Groten, Darmstadt 1988.

    Google Scholar 

  • Grafarend, E. and V. Müller (1985): The critical configuration of satellite networks, especially of Laser and Doppler type, for planar configurations of terrestrial points, manuscripta geodaetica 10 (1985) 131–152.

    Google Scholar 

  • Grafarend, E.W., W. Lindlohr and D.E. Wells (1985): GPS redundancy design using the undifferenced phase observation approach. Proceedings, Second Meeting of the European Working Group on Satellite Radio Positioning, Saint-Mandé, pp. 100–107.

    Google Scholar 

  • Grafarend, E.W. and B. Schaffrin (1988): Von der statischen zur dynamischen Auffassung geodätischer Netze. Zeitschrift für Vermessungswesen, Vol. 112, No. 2, pp. 79–103.

    Google Scholar 

  • Heitz, S. (1984): Mechanik fester Körper, Bd. 2: Dynamik elastischer Körper, mechanische Grundlagen der Geodäsie, Dümmler-Verlag, Bonn 1984.

    Google Scholar 

  • Lindlohr, W. (1988a): Alternative modeling of GPS carrier phases for geodetic network analysis. Submitted Paper, International Workshop High Precision Navigation, Stuttgart-Altenstein/Wart, May 17 - 20.

    Google Scholar 

  • Lindlohr, W. (1988b): PUMA: processing of undifferenced GPS carrier beat phase measurements and adjustment computations. Technical Report No. 5, Institute of Geodesy, University of Stuttgart, in preparation.

    Google Scholar 

  • Lindlohr, W. (1988c): Dynamische Analyse geodätischer Netze auf der Basis von GPS-Phasenbeobachtungen, Dissertation, Universität Stuttgart 1988.

    Google Scholar 

  • Lindlohr, W. and D. Wells (1985): GPS design using undifferenced carrier beat phase observations, manuscripta geodaetica H) (1985) 255–295.

    Google Scholar 

  • Magnus, K. (1986): Die Beschleunigungsabhängigkeit der Vertikalen-Anzeige von Schwerependel und Lotkreisel. Ingenieur-Archiv, 35. Band, Heft 3, 143–149, 1986.

    Google Scholar 

  • Pachelski, W., D. Lapucha and K. Budde (1988): GPS network analysis: the influence of stochastic prior information of orbital elements on ground station position measures. Technical Report No. 4, Institute of Geodesy, University of Stuttgart, Stuttgart 1988.

    Google Scholar 

  • Remondi, B.W. (1984): Using the Global Positioning System (GPS) phase observable for relative geodesy: modeling, processing, and results. CSR-84-2, Center for Space Research, The University of Texas at Austin.

    Google Scholar 

  • Schaffrin, B. (1985): Das geodätische Datum mit stochastischer Vorinformation. Deutsche Geodätische Kommission, C-13, München.

    Google Scholar 

  • Schaffrin, B. (1987): Statistical tests for an improved deformation analysis based on GPS and due to stochastic prior information, EOS 68 (1987), No. 44, p. 1237 (Abstract).

    Google Scholar 

  • Schaffrin, B. and Y. Bock (1988): A unified scheme for processing GPS dual- band phase observations, Bull. Geod. 62 (1988), to appear.

    Google Scholar 

  • Schaffrin, B. and E.W. Grafarend (1986): Generating classes of equivalent linear models by nuisance parameter elimination: applications to GPS observations. Manuscripta Geodaetica, Vol. 11, No. 4, pp. 262–271.

    Google Scholar 

  • Schröder, D., S. Wiegner, E. Grafarend and B. Schaffrin (1986): Simulation eines Geodätischen Inertialsystems. Schriftenreihe Studiengang Vermessungswesen, Universität der Bundeswehr München, Heft 22, 197–235, 1986.

    Google Scholar 

  • Schröder, D., N. Chi Thong, S. Wiegner, E.W. Grafarend and B. Schaffrin (1988) A comparative study of local level and strapdown inertial systems. Manuscripta Geodaetica, Vol. 13, No. 4, in print.

    Google Scholar 

  • Schuler, M. (1923): Die Störung von Pendel- und Kreiselapparaten durch die Beschleunigung des Fahrzeugs. Physikalische Zeitschrift, Band 24, 344–350, 1923.

    Google Scholar 

  • Schwarz, K.P. (1983): Inertial surveying and geodesy. Reviews of Geophysics and Space Physics, Vol. 21, No. 4, 878–890, 1983.

    Google Scholar 

  • Schwarz, K.P. (1986): Inertial technology for surveying and geodesy. Proceedings Third International Symposium, Banff/Canada, Sept. 16–20, 1985, ed. K.P. Schwarz, 850 pages, 2 volumes, Calgary 1986.

    Google Scholar 

  • Tsimis, E. (1973): Critical configurations (determinantal loci) for range and range-difference satellite networks. Department of Geodetic Science, Ohio State University, Report 191, Columbus 1973.

    Google Scholar 

  • Vassiliou, A. and K.P. Schwarz (1985): Eigenvalues of the dynamics matrix used in inertial geodesy, manuscripta geodaetica 10 (1985) 213–221.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grafarend, E.W. (1989). Geodetic Positioning by Inertial and Satellite Systems: An Overview. In: Linkwitz, K., Hangleiter, U. (eds) High Precision Navigation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74585-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74585-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74587-4

  • Online ISBN: 978-3-642-74585-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics