Navigational Methods of Measurement in Geodetic Surveying

  • Klaus Linkwitz
  • Wolfgang Möhlenbrink
Conference paper

Summary

Geodesy reaches a new quality of performance with the development of computer- aided measurement systems. Compared to satellite techniques well suited for global tasks, close range area techniques are achievable with unseen accuracy and unseen sampling rates. Inertial measurement techniques based on purely dynamic principles will change the educational requirements of geodesists and surveyors. This paper summarizes principles of geodetic measurement techniques and shows with examples the developement to dynamic measurement techniques in close range area. The convergence of photogrammetric and surveying techniques with respect to realtime positioning is obvious.

Keywords

Pier Stake sinO Aircrafts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature:

  1. Bayer, G. (1988): Motorized Electronic Theodolites — High Precision Measurement Robots for Surveying, Int. Workshop High Precision Navigation, SFB 228, StuttgartGoogle Scholar
  2. Bayer, G., Krzystek, P. (1986): Arbeiten und Ergebnisse der Teilprojekte D1/D3. Arbeits- und Ergebnisbericht 1984 — 1986, Sonderforschungsbereich 228 “Hochgenaue Navigation”, StuttgartGoogle Scholar
  3. Bayer, G., Krzystek, P., Möhlenbrink, W. (1988): Realtime Positioning of Moving Objects by Dynamic Target Tracking, ISPRS-Congress, KyotoGoogle Scholar
  4. Britting, K.R. (1971): Inertial Navigation System Analysis, Wiley-Inter- science, New YorkGoogle Scholar
  5. Conati, F. C. (1977): Real-Time Measurement of Threedimensional Multiple Rigid Body Motion, S. M. Thesis, Massachusetts Institute of Technology, InneGoogle Scholar
  6. Dickmanns, E.D. (1988): Vehicle Guidance by Computer Vision. Int. Workshop High Precision Navigation, SFB 228, StuttgartGoogle Scholar
  7. Hiller, M. (1983): Mechanische Systeme, Springer Verlag, BerlinGoogle Scholar
  8. Hof, A.; Pfeiffer, T. (1985): Räumliches Wegmeßsystem, 3D-Interferometer GMR- Bericht Nr. 6, März, S. 151 –165Google Scholar
  9. Janocha, H., Marquardt, R. (1979): Universell einsetzbares Wegmeßsystem mit analog anzeigenden, positionsempfindlichen Photodioden. Teil 1: Eigenschaften der verwendeten zweiachsigen Photodioden. Technisches Messen tm 1979, Heft 10, S. 369 –373Google Scholar
  10. Kirschstein, M. (1980): Verfahren zur berührungslosen dreidimensionalen Formund Verformungsmessung, Dissertation, Universität StuttgartGoogle Scholar
  11. Krauss, H. (1983): Das Bild-n-Tupel. Ein Verfahren für photogrammetrische Ingenieurvermessungen, Dissertation, Universität Stuttgart, DGK Reihe C, Heft 276, MünchenGoogle Scholar
  12. Krzystek, P. (1988): High Precision Surveying of Moving Objects by Electronic Cameras, Int. Workshop High Precision Navigation, SFB 228, StuttgartGoogle Scholar
  13. Lindlohr, W., Wells, D. (1985): GPS Design Using Undifferenced Carrier Beat Phase Observations, Manuscripta Geodaetica, Springer Verlag, Berlin — HeidelbergGoogle Scholar
  14. Möhlenbrink, W. (1988): Realtime Surveying in Close Range Area with Inertial Navigation Systems and Optical Target Tracking Techniques, Int. Workshop- High Precision Navigation, SFB 228, StuttgartGoogle Scholar
  15. Möhlenbrink, W., Krzystek, P. (1984): Messungen windinduzierter Bewegungen an Hochbauten — Erfahrungen und neue Erkenntnisse, I X. Int. Kurs für Ingenieurvermessung, GrazGoogle Scholar
  16. Möhlenbrink, W., Welsch, D. (1984): Aktions-Reaktions-Analyse thermischer Verformungen an Ingenieurbauten, I X. Int. Kurs für Ingenieurvermessung, GrazGoogle Scholar
  17. Reigber, Ch. (1982): Abschlußbericht zum Teilprojekt B3 “Figur- und Feldpara- meterbestimmung” des SFB 78 Satellitengeodäsie, DGK Reihe B, Heft 261, MünchenGoogle Scholar
  18. Rembold, U., Levi P. (1986): Sensors and Control for Autonomous Robots, Preprints Int. Conference Intelligent Autonomous Systems, Elsevier Science Publishers B. V.Google Scholar
  19. Schwarz, K.P. (1986): The Error Model of Inertial Geodesy — A Study in Dynamic System Analysis, Lecture Notes, Fourth Int. Summer School, Admont, AustriaGoogle Scholar
  20. Stieler, B., Winter, H. (1982): Hyroscopie Instruments and their Application for Flight Testing, AGARD, Neuilly Sur SeineGoogle Scholar
  21. Woltring, H. J. (1976): Calibration and Measurement in 3D-Monitoring of Human Motion by Opto-Electronic Means.II. Experimental Results and Discusión. Biotelemetry, 3, pp. 65 - 97Google Scholar
  22. Schwidefsky, K., Ackermann, F. (1976): Photogrammetrie, Teubner Verlag, StuttgartGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Klaus Linkwitz
    • 1
  • Wolfgang Möhlenbrink
    • 1
  1. 1.Inst. für Anwendungen der Geodäsie im BauwesenUniversität StuttgartGermany

Personalised recommendations