Brain Dynamics pp 214-232 | Cite as

Can Artificial Intelligence Help in Finding How Brains May Work?

  • A. de Callataÿ
Conference paper
Part of the Springer Series in Brain Dynamics book series (SSBD, volume 2)

Abstract

Here I will set out the research methods of artificial intelligence (AI) workers, and why they believe they can contribute to discovering how brains may work. I explain three main AI principles with simple examples: symbolic computation, qualitative physics to control artificial animals, and mechanisms of automatic deduction. AI builds neural-like computers whose components can be speculatively mapped to the neurons, suggesting their functions. I illustrate AI researches with examples from my work.

Keywords

Pyrami Extractor Broom 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson JR (1983) The architecture of cognition. Harvard University Press, CambridgeGoogle Scholar
  2. Barondes SH (1969) The mirror focus and the long term memory. In Jasper HJ, Ward AA, Pope A (eds) Basic mechanisms of the epilepsies. Little Brown, Boston, pp 371–374Google Scholar
  3. Brindley GS (1967) The classification of modifiable synapses and their use in models for conditioning. Proc R Soc (Lond) [Biol]l68: 361–376CrossRefGoogle Scholar
  4. Callataÿ A de (1969) Brain model with periodic processing. Curr Mod Biol 2: 307–319PubMedGoogle Scholar
  5. Callataÿ A de (1986) Natural and artificial intelligence: processor systems compared to the human brain. North-Holland, AmsterdamGoogle Scholar
  6. Callataÿ A de (1987) Un noyau de système expert basé sur la recherche documentaire. Journal des Ingénieurs, FABI 19: 5–9Google Scholar
  7. Callataÿ A de (1988) Logic programs directly processed in a network of content addressable memories. Future Generations Computer Systems 4: 117–131CrossRefGoogle Scholar
  8. Changeux JP (1974) Some biological observations relevant to a theory of learning. In: Bresson F, Mehler J (eds) Current problems in psycholinguistics. CNRS, ParisGoogle Scholar
  9. Chisholm RM (1966) Brentano, F: The true and the evident. Routledge, LondonGoogle Scholar
  10. Cohen MR (1944) A Preface to Logics. Holt (reprinted Dover, New York, 1977 )Google Scholar
  11. Connor JR, Diamond MC (1982) A comparison of dendritic spine number and type on pyramidal neurons of the visual cortex of old adult rats from social and isolated environments. J Comp Neurol 210: 99–106PubMedCrossRefGoogle Scholar
  12. Eccles JC (1973) The cerebellum as a computer: patterns in space and time. J Physiol 229: 1–32PubMedGoogle Scholar
  13. Gamble E, Koch C (1987) The dynamics of free calcium in dendritic spines in response to repetitive synaptic input. Science 236: 1311–1315PubMedCrossRefGoogle Scholar
  14. Goddard GV (1967) Development of epileptic seizures through brain stimulation at low intensity. Nature 214: 1020–1021PubMedCrossRefGoogle Scholar
  15. Hebb DO (1949) The organization of behaviour. Wiley, New YorkGoogle Scholar
  16. Johnson-Laird PN (1983) Mental models. Cambridge Univesity Press, New YorkGoogle Scholar
  17. Koch C, Poggio T (1983) Electric properties of dendritic spines. Trends Neurosci 7: 80–83CrossRefGoogle Scholar
  18. Letovsky S (1987) AI and the human mind: conference report. AI Fall: 63–69Google Scholar
  19. Llinas R (1979) The role of calcium in neuronal function. In: Schmitt FO, Worden FG (eds) The neurosciences: fourth study program. MIT press, Cambridge, pp 555–572Google Scholar
  20. Lynch G (1986) Synapses, circuits, and the beginnings of memory. MIT Press, CambridgeGoogle Scholar
  21. McCarthy J (1987) Generality in artificial intelligence (postscript to his Turing Award Lecture in 1971 ) Comm ACM (December) 30: 1030–1035CrossRefGoogle Scholar
  22. McClelland JL, Rumelhart DE (eds) (1986) Parallel distributed processing: explorations in the microstructure of cognition. MIT Press, CambridgeGoogle Scholar
  23. Marr D (1969) A theory of cerebellar cortex. J Physiol 202: 437–470PubMedGoogle Scholar
  24. Minsky M (1986) The society of mind. Simon and Schuster, New YorkGoogle Scholar
  25. Minsky M, Papert S (1969) Perceptrons. MIT Press, CambridgeGoogle Scholar
  26. Newell A (1980) Physical symbols systems. Cogn Sci 4: 135–183CrossRefGoogle Scholar
  27. Newell A, Simon HA (1972) Human problem solving. Prentice Hall, Englewood CliffsGoogle Scholar
  28. Newell A, Simon HA (1976) Computer science as empirical inquiry: symbols and search (1975 ACM Turing Award Lecture). CACM 19(3):113–126 [reprinted in Haugeland J (ed) (1981) Mind design: philosophy—psychology—artificial intelligence. MIT Press, Cambridge]Google Scholar
  29. Prigogine I, Stengers I (1984) Order out of chaos: man’s new dialogue with nature. Bantam Books, TorontoGoogle Scholar
  30. Quine WW (1985) States of mind. J Philos 82: 5–8CrossRefGoogle Scholar
  31. Russell B (1921) The analysis of mind. Allen and Unwin, LondonGoogle Scholar
  32. Simon HA (1976) The information storage called human memory. In: Rosenzweig MR, Bennett EL (eds) Neural mechanisms of learning and memory. MIT Press, CambridgeGoogle Scholar
  33. Thibon G (1936) La Science du Caractère ( L’Oeuvre de Ludwig Klages) Desclée de Brouwer, ParisGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • A. de Callataÿ

There are no affiliations available

Personalised recommendations