Application of the Coherent Anomaly Method to d-Dimensional Ising Spin Glasses

  • S. Fujiki
Part of the Springer Series in Synergetics book series (SSSYN, volume 43)


The spin-glass susceptibility is analyzed by the Coherent Anomaly Method (CAM) [1] applied to a series of closed-form approximations in the Cluster Variation Method (CVM) [2] for the random-bond Ising model on the square, cubic and hyper-cubic lattices. No spin-glass transition is obtained for the square lattice, while for the cubic lattice and higher dimensional lattices spin-glass transitions are obtained; the transition temperature and the exponent of the spin-glass susceptibility obtained for the cubic lattice are in good agreement with those by Monte Carlo simulations [3].


  1. 1.
    M. Suzuki, J. Phys. Soc. Jpn. 55 (1986) 4205. M. Suzuki, M. Katori and X. Hu, J. Phys. Soc. Jpn. 56 (1987) 3092.CrossRefADSGoogle Scholar
  2. 2.
    T. Morita, J. Math. Phys. 13 (1972) 115.CrossRefADSGoogle Scholar
  3. 3.
    A.T. Ogielski, Phys. Rev. B 32 (1985) 7384. E.N. Bhatt and A.P. Young, Phys. Rev. Lett. 54 (1985) 924.CrossRefADSGoogle Scholar
  4. 4.
    S.F. Edwards and P.W. Anderson, J. Phys. F 5 (1975) 965.CrossRefADSGoogle Scholar
  5. 5.
    S. Fujiki and S. Katsura, Prog. Theor. Phys. 65 (1981) 1130. M. Suzuki, Phys. Lett. A 127 (1988) 410.CrossRefADSGoogle Scholar
  6. 6.
    S. Katsura and S. Fujiki, J. Phys. C 13 (1980) 4711, 4723.CrossRefADSGoogle Scholar
  7. 7.
    R. Kikuchi, Phys. Rev. 81 (1951) 988.CrossRefzbMATHADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • S. Fujiki
    • 1
  1. 1.Department of Engineering Science, Faculty of EngineeringTohoku UniversitySendaiJapan

Personalised recommendations