Skip to main content

Nuclear Magnetic Resonance Spectroscopic Techniques for the Study of Cellular Function

  • Chapter
Advances in Comparative and Environmental Physiology

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 5))

Abstract

The tremendous strides in metabolic research that have taken place over the last 50 years have largely been accomplished through studies of subcellular systems. For instance, metabolite levels and enzyme activities have been determined in extracts of cells. Enzymes have been highly purified and kinetic properties analyzed in in vitro systems where substrate concentrations far exceed enzyme concentrations. All of these approaches involve physical disruption of cells resulting in relatively homogeneous extracts devoid of the ordered microstructure found in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam WR, Koretsky AP, Weiner MW (1987) Measurement of tissue potassium in vivo using 39K nuclear magnetic resonance. Biophys J 51:265–271

    PubMed  CAS  Google Scholar 

  • Alger JR, Shulman RG (1984) NMR studies of enzymic rates in vitro and in vivo by magnetization transfer. Q Rev Biophys 17:83–124

    PubMed  CAS  Google Scholar 

  • Arus C, Barany M (1986) Application of high field 1H-NMR spectroscopy for the study of perfused amphibian and excised mammalian muscles. Biochim Biophys Acta 886:411–424

    PubMed  CAS  Google Scholar 

  • Arus C, Barany M, Westler WM, Markley JL (1964) 1H NMR of intact muscle at 11 T. FEBS Lett 165:231–236

    Google Scholar 

  • Balaban RS, Knepper MA (1983) Nitrogen-14 nuclear magnetic resonance spectroscopy of mammalian tissues. Am J Physiol 245:C439–C444

    PubMed  CAS  Google Scholar 

  • Baischi JA, Cirillo VP, Springer CS (1982) Direct high resolution nuclear magnetic resonance studies of cation transport in vivo. Biophys J 38:323–326

    Google Scholar 

  • Barbour RL, Sotak CH, Levy GC, Chan HP (1984) Use of gated perfusion to study early effects of anoxia on cardiac energy metabolism: a new 31P NMR method. Biochemistry 23:6054–6062

    Google Scholar 

  • Behar KL, den Hollander JA, Stromski ME, Ogino T, Shulman RG, Petroff OAC, Pritchard JW (1983) High resolution 1H nuclear magnetic resonance study of cerebral hypoxia in vivo. Proc Natl Acad Sci USA 80:4945–4948

    PubMed  CAS  Google Scholar 

  • Behar KL, Rothman DL, Shulman RG, Petroff OAC, Pritchard JW (1984) Detection of cerebral lactate in vivo during hypoxemia by 1H NMR at relatively low field strengths (1.9 T). Proc Natl Acad Sci USA 81:2517–2519

    PubMed  CAS  Google Scholar 

  • Bittl JA, Ingwall JS (1985) Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. J Biol Chem 260: 3512–3517

    PubMed  CAS  Google Scholar 

  • Bond M, Shporer M, Peterson K, Civan MM (1981) 31P nuclear magnetic resonance analysis of toad urinary bladder. Mol Physiol 1:243–263

    CAS  Google Scholar 

  • Bottomley PA, Herfkeus RJ, Smith SL, Bashmore TM (1987) Altered phosphate metabolism in myocardial infarction: P-31 MR spectroscopy. Radiology 165:703–707

    PubMed  CAS  Google Scholar 

  • Briggs RW, Radda GK, Thulborn KR (1985) 31P-NMR saturation transfer study of the in vivo kinetics of arginine kinase in Carcinus crab leg muscle. Biochim Biophys Acta 845:343–348

    CAS  Google Scholar 

  • Brindle KM, Campbell ID (1987) NMR studies of kinetics in cells and tissue. Q Rev Biophys 19:159–182

    PubMed  CAS  Google Scholar 

  • Brindle KM, Radda GK (1987) 31P-NMR saturation transfer measurements of exchange between Pi and ATP in the reactions catalyzed by glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase in vivo. Biochim Biophys Acta 928:45–55

    PubMed  CAS  Google Scholar 

  • Brindle KM, Campbell ID, Simpson RJ (1986) A 1H-NMR study of the activity expressed by lactate dehydrogenase in the intact human erythrocyte. Eur J Biochem 158:299–305

    PubMed  CAS  Google Scholar 

  • Brown TR, Ogawa S (1977) 31P nuclear magnetic resonance kinetic measurements on adenylate kinase. Proc Natl Acad Sci USA 74:3627–3631

    PubMed  CAS  Google Scholar 

  • Budinger TF, Margolis AR (1986) Medical magnetic resonance imaging and spectroscopy. Soc Magn Reson Med, Berkeley, Cal

    Google Scholar 

  • Bunger R (1985) Compartmented pyruvate in perfused working heart. Am J Physiol 249:H439–H449.

    PubMed  CAS  Google Scholar 

  • Burstein D, Fossei ET (1987) Nuclear magnetic resonance studies of intracellular ions in perfused frog heart. Am J Physiol 252:H1138–H1146

    PubMed  CAS  Google Scholar 

  • Busa WB, Nuccitelli R (1984) Metabolic regulation via intracellular pH. Am J Physiol 246:R409–R438

    PubMed  CAS  Google Scholar 

  • Busa WB, Crowe JH, Maison GB (1982) Intracellular pH and the metabolic status of dormant and developing Artemia embryos. Arch Biochem Biophys 216:711–718

    PubMed  CAS  Google Scholar 

  • Busby SJW, Gadian DG, Radda GK, Richards RE, Seeley PJ (1978) Phosphorus nuclear magnetic resonance studies of compartmentation in muscle. Biochem J 170:103–114.

    PubMed  CAS  Google Scholar 

  • Butler KW, Deslauriers R, Geoffrion Y, Storey JM, Storey KB, Smith CP, Somorjai RL (1985) 31P nuclear magnetic resonance studies of crayfish (Orconectes virilis). Eur J Biochem 149:79–83

    PubMed  CAS  Google Scholar 

  • Campbell ID, Dobson CM, Ratcliffe RG, Williams RJD (1977) Fourier transform NMR pulse methods for the measurement of slow exchange rates. J Magn Reson 29:397–405

    Google Scholar 

  • Castle AM, MacNab RM, Shulman RG (1986) Measurement of intracellular sodium concentration and sodium transport in Escherichia coli by 23Na nuclear magnetic resonance. J Biol Chem 261:3288–3294

    PubMed  CAS  Google Scholar 

  • Chance B, Leigh JS, Clark BJ, Maris J, Kent J, Noika S, Smith D (1985) Control of oxidative metabolism and oxygen delivery in human skeletal muscle: a steady state analysis of the work/energy cost transfer function. Proc Natl Acad Sci USA 82:8384–8388

    PubMed  CAS  Google Scholar 

  • Chance EM, Seeholzer SH, Kobayashi K, Williamson JR (1983) Mathematical analysis of isotope labeling in the citric acid cycle with applications to 13C NMR studies in perfused rat hearts. J Biol Chem 258:13785–13794

    PubMed  CAS  Google Scholar 

  • Chin CP, Ellington WR (1985) Metabolic correlates of intracellular pH change during rapid contractile activity in a molluscan muscle. J Exp Zool 236:27–34

    Google Scholar 

  • Christen R, Schackmann RW, Dahlquist FW, Shapiro BM (1983) 31P-NMR analysis of sea urchin sperm activation. Exp Cell Res 149:289–294

    PubMed  CAS  Google Scholar 

  • Clarke FM, Stephan P, Huxham G, Hamilton D, Morton DJ (1984) Metabolic dependence of glycolytic enzyme binding in rat and sheep heart. Eur J Biochem 138:643–649

    PubMed  CAS  Google Scholar 

  • Clegg JS (1984) Properties and metabolism of the aqueous cytoplasm and its boundaries. Am J Physiol 246:R133–R151

    PubMed  CAS  Google Scholar 

  • Cohen SM (1987 a) 13C and 31P NMR study of gluconeogenesis: utilization of 13C-labeled substrates by perfused liver from streptozotocin-diabetic and untreated rats. Biochemistry 26:563–572

    PubMed  CAS  Google Scholar 

  • Cohen SM (1987 b) Effects of insulin on perfused liver from streptozotocin-diabetic and untreated rats: 13C NMR assay of pyruvate kinase flux. Biochemistry 26:573–580

    PubMed  CAS  Google Scholar 

  • Cohen SM, Ogawa S, Shulman RG (1979) 13C NMR studies of gluconeogenesis in rat liver cells: utilization of labeled glycerol by cells from euthyroid and hyperthyroid rats. Proc Natl Acad Sci USA 76:1603–1607

    PubMed  CAS  Google Scholar 

  • Cohen SM, Glynn P, Shulman RG (1981a) 13C NMR study of gluconeogenesis from labeled alanine in hepatocytes from euthyroid and hyperthyroid rats. Proc Natl Acad Sci USA 78:60–64

    PubMed  CAS  Google Scholar 

  • Cohen SM, Rognstad R, Shulman RG, Katz J (1981b) A comparison of 13C nuclear magnetic resonance and 14C tracer studies of hepatic metabolism. J Biol Chem 256:3428–3432

    PubMed  CAS  Google Scholar 

  • Cohn M, Hughes TR (1962) Nuclear magnetic resonance spectra of adenosine di- and triphosphate. II. Effect of complexing with divalent metal ions. J Biol Chem 237:176–181

    PubMed  CAS  Google Scholar 

  • Cranney GB, Evanochko WT, Vaughn JM, Prohost GM (1987) T1 alterations of 31P metabolites with hypoxic insult. Soc Magn Reson Med, New York Meet 568

    Google Scholar 

  • Dawson MJ, Gadian DG, Wilkie DR (1977) Contraction and recovery of living muscles studied by 31P nuclear magnetic résonance. J Physiol 267:703–735

    PubMed  CAS  Google Scholar 

  • Dawson MJ, Gadian DG, Wilkie DR (1978) Muscular fatigue investigated by phosphorus nuclear magnetic resonance. Nature (London) 274:861–866

    CAS  Google Scholar 

  • DeFronzo M, Gillies RJ (1987) Characterization of methylphosphonate as a 31P NMR pH indicator. J Biol Chem 262:11032–11037

    PubMed  CAS  Google Scholar 

  • Degani H, Laughlin M, Campbell S, Shulman RG (1985) Kinetics of creatine kinase in heart: a 31P NMR saturation- and inversion-transfer study. Biochemistry 24:5510–5516

    PubMed  CAS  Google Scholar 

  • Desmoulin F, Cozzone PJ, Canioni P (1987) Phosphorus-31 nuclear magnetic resonance study of phosphorylated metabolite compartmentation, intracellular pH and phosphorylation state during normoxia, hypoxia and ethanol perfusion, in the perfused rat liver. Eur J Biochem 162:151–159

    PubMed  CAS  Google Scholar 

  • Devel PK, Yue GM, Sherman WR, Schickner DJ, Ackerman JJH (1985) Monitoring the time course of cerebral deoxyglucose metabolism by 31P nuclear magnetic resonance spectroscopy. Science 228:1329–1331

    Google Scholar 

  • Dubyak GR, Scarpa A (1983) Phosphorus-31 nuclear magnetic resonance studies of single muscle cells isolated from barnacle depressor muscle. Biochemistry 22:3531–3536

    PubMed  CAS  Google Scholar 

  • Ellington WR (1983) Phosphorus nuclear magnetic resonance studies of energy metabolism in molluscan tissues: effect of anoxia and ischemia on the intracellular pH and high energy phosphates in the ventricle of the whelk, Busycon contrarium. J Comp Physiol 153:159–166

    CAS  Google Scholar 

  • Ellington WR (1985) Metabolic impact of experimental reductions of intracellular pH in molluscan cardiac muscle. Mol Physiol 7:155–164

    CAS  Google Scholar 

  • Fisher MJ, Dillon PF (1986) Phenylphosphonate (PPA): a 31P-NMR indicator of extracellular pH and volume. Fed Proc 45:765

    Google Scholar 

  • Forsen S, Hoffman RA (1963) Study of moderately rapid chemical exchange by means of nuclear magnetic double resonance. J Chem Phys 39:2892–2901

    CAS  Google Scholar 

  • Fossei ET, Ingwall JS (1982) Measurement of dynamic aspects of energy metabolism in the heart using 31P NMR magnetic resonance spectroscopy. In: Cohen JS (ed) Noninvasive probes of tissue metabolism. John Wiley & Sons, New York, pp 173–207

    Google Scholar 

  • Friedrich P (1985) Dynamic compartmentation in soluble multienzyme systems. In: Welch RA (ed) Organized multienzyme systems. Academic Press, New York London, pp 141–176

    Google Scholar 

  • Gadian DG (1982) Nuclear magnetic resonance and its applications to living systems. Oxford Univ Press, New York

    Google Scholar 

  • Gadian DG, Radda GK, Brown TR, Chance EM, Dawson MJ, Wilkie DR (1981) The activity of creatine kinase in frog skeletal muscle studied by saturation transfer nuclear magnetic resonance. Biochem J 194:215–228

    PubMed  CAS  Google Scholar 

  • Gard JK, Kichura GM, Ackerman JJH, Eisenberg JD, Billadello JJ, Sobel BE, Gross RW (1985) Quantitative 31P nuclear magnetic resonance analysis of metabolite concentrations in Langendorf-perfused rabbit hearts. Biophys J 48:803–813

    PubMed  CAS  Google Scholar 

  • Garfinkel L, Alschuld RA, Garfinkel D (1986) Magnesium in cardiac energy metabolism. J Mol Cell Card 18:1003–1013

    CAS  Google Scholar 

  • Garlick PB, Radda GK, Seeley PJ (1979) Studies of acidosis in the ischemic heart by phosphorus nuclear magnetic resonance. Biochem J 184:547–554

    PubMed  CAS  Google Scholar 

  • Gillies RJ, Alger JR, den Hollander JA, Shulman RG (1982) Intracellular pH measured by NMR: methods and results. In: Nuccitelli R, Deamer DW (eds) Intracellular pH. Liss, New York, pp 79–104

    Google Scholar 

  • Graham RA, Ellington WR (1985) Anaerobic aspartate utilization and alanine formation in molluscan cardiac muscle: a 13C-NMR study. J Exp Zool 236:365–370

    CAS  Google Scholar 

  • Graham RA, Ellington WR (1986) Phosphorus nuclear magnetic resonance studies of energy metabolism in molluscan muscle: intracellular pH and the qualitative nature of anaerobic end products. Physiol Zool 58:478–490

    Google Scholar 

  • Graham RA, Ellington WR, Chih CP (1986) A saturation transfer phosphorus nuclear magnetic resonance study of arginine Phosphokinase in the muscle of a marine mollusc. Biochim Biophys Acta 887:157–163

    CAS  Google Scholar 

  • Gullans SR, Avison MJ, Ogino T, Giebisch G, Shulman RG (1985) NMR measurements of intracellular sodium in the rabbit proximal tubule. Am J Physiol 249:F160–F168

    PubMed  CAS  Google Scholar 

  • Gupta RK, Gupta P (1982) Direct observation of resolved resonances from intra- and extracellular sodium-23 ions in NMR studies of intact cells and tissues using dysprosium (111) tripolyphosphate as paramagnetic shift reagent. J Magn Reson 47:344–350

    CAS  Google Scholar 

  • Gupta RK, Moore RD (1980) NMR studies of intracellular free Mg2+ in intact frog skeletal muscle. J Biol Chem 255:3987–3994

    PubMed  CAS  Google Scholar 

  • Gupta RK, Benovic JL, Rose ZB (1978) The determination of the free magnesium level in the red blood cell by 31P-NMR. J Biol Chem 253:6172–6176

    PubMed  CAS  Google Scholar 

  • Gupta RK, Gupta P, Vushok WD, Rose ZB (1983) Measurement of the dissociation constant of Mg ATP at physiological nucleotide levels by a combination of 31P NMR and optical absorbance spectroscopy. Biochem Biophys Res Commun 117:210–216

    PubMed  CAS  Google Scholar 

  • Gupta RK, Gupta P, Moore RD (1984) NMR studies of intracellular metal ions in intact cells and tissues. Annu Rev Biophys Bioeng 13:221–246

    PubMed  CAS  Google Scholar 

  • Hamm JR, Yue GM (1987) 31P nuclear magnetic resonance measurements of intracellular pH in giant barnacle muscle. Am J Physiol 252:C30–C37

    PubMed  CAS  Google Scholar 

  • Hansen J, Sharpe T, Bittar EE (1986) Phosphate metabolites in single barnacle muscle fibers investigated by phosphorus-31 nuclear magnetic resonance. Comp Biochem Physiol 83B:875–879

    CAS  Google Scholar 

  • Haseler LJ, Brooks WM, Irving MG, Bulliman BT, Kuchel PW, Doddrell DM (1986) Use of inversion transfer to monitor creatine kinase kinetics in rat skeletal muscle in vivo. Biochem Int 12:613–618

    PubMed  CAS  Google Scholar 

  • Hebisch S, Soboll S, Schwenen J, Sies H (1984) Compartmentation of high energy phosphates in resting and working rat skeletal muscle. Biochim Biophys Acta 74:117–124

    Google Scholar 

  • Hitzig BM, Johnson DC, McFarland E, Koutcher JA, Kazemi H, Burt CT (1987 a) Unknown phosphate compounds in the tail muscle of intact conscious newts by 31P NMR. Comp Biochem Physiol 86B:537–540

    CAS  Google Scholar 

  • Hitzig BM, Pritchard JW, Kantor HL, Ellington WR, Ingwall JS, Burt CT, Helman SI, Koutchev J (1987 b) NMR spectroscopy as an investigative technique in physiology FASEB J 1:22–31

    PubMed  CAS  Google Scholar 

  • Hoffman D, Gupta RK (1986) NMR measurement of intracellular water volume. J Magn Reson 70:481–483

    CAS  Google Scholar 

  • Hoult DI (1978) The NMR receiver: a description and analysis of design. Proc NMR Res 12:41–77

    Google Scholar 

  • Hoyle G, McNeill PA, Selerston AI (1973) Ultrastructure of barnacle giant muscle fibers. J Cell Biol 56:74–91

    PubMed  CAS  Google Scholar 

  • Inoue H, Yoshioka T (1980) Measurement of intracellular pH in sea urchin eggs by 31P-NMR. J Cell Physiol 105:461–468

    PubMed  CAS  Google Scholar 

  • Jacobus WE, Pores IH, Lucas SK, Kallman CH, Weisfeldt ML, Flaherty JT (1982) The role of intracellular pH in the control of normal and ischemic myocardial contractility: a 31P nuclear magnetic resonance and mass spectrometry study. In: Deamer R, Nuccitelli DW (eds) Intracellular pH. Liss, New York, pp 537–565

    Google Scholar 

  • Jan AWH, Amsler K, Griewel B, Kinne RKH (1987) Regulation of intracellular pH in LLC-PK1 cells studied using 31P-NMR spectroscopy. Biochim Biophys Acta 927:203–212

    Google Scholar 

  • Jue T, Arias-Mendoza F, Gonnella NC, Shulman GI, Shulman RG (1985) A 1H NMR technique for observing metabolite signals in the spectrum of perfused liver. Proc Natl Acad Sci USA 82:5246–5249

    PubMed  CAS  Google Scholar 

  • Jue T, Chung Y, Shulman RG (1987) Measuring the redox potential in perfused liver with 1H NMR. Soc Magn Res Med, New York, p 276

    Google Scholar 

  • Kalderon B, Gophev A, Lapiclot A (1987) A quantitative analysis of the metabolic pathways of hepatic glucose synthesis in vivo with 13C-labeled substrates. FEBS Lett 213:209–214

    PubMed  CAS  Google Scholar 

  • Kamp G, Juretschke HP (1987) An in vivo 31P-NMR study of the possible regulation of glycogen Phosphorylase a by Phosphagen via phosphate in the abdominal muscle of the shrimp Crangon crangon. Biochim Biophys Acta 929:121–127

    PubMed  CAS  Google Scholar 

  • Kingsley-Hickman P, Sako EY, Andreone PA, St Cyr JA, Michurski S, Foker JG, Fromm AHL, Petgein M, Ugurbil K (1986) 31P-NMR measurement of ATP synthesis rate in perfused intact rat hearts. FEBS Lett 198:159–163

    PubMed  CAS  Google Scholar 

  • Korn ED, Carlier M-F, Pantaloni D (1987) Actin polymerization and ATP hydrolysis. Science 238:638–644

    PubMed  CAS  Google Scholar 

  • Kuchel PW, Bulliman BT, Chapman BE, Kirk K (1987 a) The use of transmembrane differences in saturation transfer for measuring fast membrane transport; application to H13CO3 - exchange across the human erythrocyte. J Magn Reson 74:1–11

    CAS  Google Scholar 

  • Kuchel PW, Chapman BE, Potts JR (1987 b) Glucose transport in human erythrocytes measured using 13C NMR spin transfer. FEBS Lett 219:5–10

    PubMed  CAS  Google Scholar 

  • Kurkdjian A, Barbier-Brygoo H (1983) A hydrogen ion-selective liquid-membrane electrode for measurement of the vacuolar pH of plant cells in suspension culture. Anal Biochem 132:96–104

    PubMed  CAS  Google Scholar 

  • Kushmerick MJ, Meyer RA, Brown TR (1983) Phosphorus NMR spectroscopy of cat biceps and soleus muscles. In: Bicher HI, Bruley DF (eds) Oxygen transport to tissue, vol 4. Plenum, New York, pp 303–324

    Google Scholar 

  • Kushmerick MJ, Dillon PF, Meyer RA, Brown TR, Krisanda JM, Sweeney HL (1986) 31P NMR spectroscopy, chemical analysis, and free Mg2+ of rabbit bladder and uterine smooth muscle. J Biol Chem 261:14420–14429

    PubMed  CAS  Google Scholar 

  • Kuwabara T, Yuasa T, Miyatake T (1986) 31P-NMR studies on an animal model of human defective muscle glycolysis. Muscle Nerve 9:138–143

    PubMed  CAS  Google Scholar 

  • Labotka RJ, Kieps RA (1983) A phosphate-analogue probe of red cell pH using phosphorus-31 nuclear magnetic resonance. Biochemistry 22:6089–6095

    PubMed  CAS  Google Scholar 

  • Lavanchy N, Martin J, Rossi A (1984a) Graded global ischaemia and reperfusion of the isolated perfused rat heart. Cardiovasc Res 18:573–582

    PubMed  CAS  Google Scholar 

  • Lavanchy N, Martin J, Rossi A (1984 b) Glycogen metabolism: a 13C-NMR study on the isolated perfused rat heart. FEBS Lett 178:34–38

    PubMed  CAS  Google Scholar 

  • Levy LA, Murphy E, London RE (1987) Synthesis and characterization of 19F NMR chelators for measurement of cytosolic free Ca. Am J Physiol 252:C441–C449

    PubMed  CAS  Google Scholar 

  • Lin L-E, Shporer M, Civan MM (1982) 13P nuclear magnetic resonance analysis of frog skin. Am J Physiol 243:C74–C80

    PubMed  CAS  Google Scholar 

  • Lin P-S, Blumenstein M, Mikkelsen RB, Schmidt-Ullrich R, Bachovchin WW (1987) Perfusion of cell spheroids for study by NMR spectroscopy. J Magn Reson 73:399–404

    Google Scholar 

  • Livingston DJ, La Mar GN, Brown WD (1983) Myoglobin diffusion in bovine heart muscle. Science 222:71–73

    Google Scholar 

  • Lynch RM, Paul RJ (1987) Compartmentation of metabolism in vascular smooth muscle. Am J Physiol 252:C328–C334

    PubMed  CAS  Google Scholar 

  • Malloy CR, Sherry AD, Jeffrey FMH (1987) Carbon flux through citric acid cycle pathways in perfused hearts by 13C NMR spectroscopy. FEBS Lett 212:58–62

    PubMed  CAS  Google Scholar 

  • Mansour TE, Morris PG, Feeney J, Roberts GCK (1982) A 31P-NMR study of the intact liver fluke Fasciola hepatica. Biochim Biophys Acta 721:336–340

    PubMed  CAS  Google Scholar 

  • Matthews PM, Bland JL, Madiun DG, Radda GK (1981) The steady state rate of ATP synthesis in the perfused rat heart by 31P NMR saturation transfer. Biochim Biophys Res Commun 103:1052–1059

    CAS  Google Scholar 

  • Matthews PM, Bland JL, Gadian DG, Radda GK (1982) A 31P-NMR saturation transfer study of the regulation of creatine kinase in the rat heart. Biochim Biophys Acta 721:312–320

    PubMed  CAS  Google Scholar 

  • Meyer RA, Kushmerick MJ, Brown TR (1982) Application of 31P NMR spectroscopy to the study of skeletal muscle metabolism. Am J Physiol 242:C1–C11

    PubMed  CAS  Google Scholar 

  • Meyer RA, Sweeney HL, Kushmerick MJ (1984) A simple analysis of the “phosphocreatine shuttle”. Am J Physiol 246:C365–C377

    PubMed  CAS  Google Scholar 

  • Meyer RA, Brown TR, Kushmerick MJ (1985) Phosphorus nuclear magnetic resonance of fast-and slow-twitch muscles. Am J Physiol 248:C279–C287

    PubMed  CAS  Google Scholar 

  • Meyer RA, Brown TR, Krilowicz BL, Kushmerick MJ (1986) Phosphagen and intracellular pH changes during contraction of creatine-depleted rat muscle. Am J Physiol 250:C264–C274

    PubMed  CAS  Google Scholar 

  • Moon RB, Richards JH (1973) Determination of intracellular pH by 31P nuclear magnetic resonance. J Biol Chem 248:7276–7278

    PubMed  CAS  Google Scholar 

  • Morris PG, Smith GA, Metcalfe JC, Rodrigo GC (1987) A new NMR approach to the measurement of intracellular cations in living systems. Soc Magn Reson Med, New York, p 31

    Google Scholar 

  • Naritomi H, Kanashiro M, Sasaki M, Kuribayashi Y, Sawada T (1987) In vivo measurements of intra- and extracellular Na+ and water in the brain and muscle by nuclear magnetic resonance spectroscopy with shift reagent. Biophys J 52:611–616

    PubMed  CAS  Google Scholar 

  • Neeman M, Rushkin E, Kaye AM, Degani H (1987) 31P-NMR studies of phosphate transfer rates in T470 human breast cancer cells. Biochim Biophys Acta 930:179–192

    PubMed  CAS  Google Scholar 

  • Neurohr KJ, Barrett EJ, Shulman RG (1983) In vivo carbon-13 nuclear magnetic resonance studies of heart metabolism. Proc Natl Acad Sci USA 80:1603–1607

    PubMed  CAS  Google Scholar 

  • Ogino T, Shulman GI, Avison MG, Gullans SR, den Hollander JA and Shulman RG (1985) 23Na and 39K NMR studies of ion transport in human erythrocytes. Proc Natl Acad Sci USA 82:1099–1103

    PubMed  CAS  Google Scholar 

  • Peukhurinen KJ, Hiltunen JK, Hassinen IE (1983) Metabolic compartmentation of pyruvate in the isolated perfused rat heart. Biochem J 210:193–198

    Google Scholar 

  • Pike MM, Frazer DF, Ingwall JS, Allen PD, Springer CS, Smith TW (1985) 23Na and 39K nuclear magnetic resonance studies of perfused rat hearts. Discrimination of intra- and extracellular ions using a shift reagent. Biophys J 48:159–173

    PubMed  CAS  Google Scholar 

  • Piwnica-Worms D, Lieberman M (1983) Microfluorometric monitoring of pH¡ in cultured heart cells: Na+-H+ exchange. Am J Physiol 244:C422–C428

    PubMed  CAS  Google Scholar 

  • Reo NV, Siegfried BA, Ackerman JJH (1984) Direct observation of glycogenesis and glucagon-stimulated glycogenolysis in the rat liver in vivo by high field carbon-13 surface coil NMR. J Biol Chem 259:13664–13667

    PubMed  CAS  Google Scholar 

  • Richards RE, Thomas NA (1974) A 14N NMR study of amino acids, peptides and other biologically interesting molecules. J Chem Soc Perkin Trans 2:368–374

    Google Scholar 

  • Rohrer SP, Saz HP, Howak T (1986) 13P-NMR studies of the metabolisms of the parasitic helminths Ascaris suum and Fasciola hepatica. Arch Biochem Biophys 248:200–209

    PubMed  CAS  Google Scholar 

  • Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434

    PubMed  CAS  Google Scholar 

  • Schadewaldt P, Munch U, Staib W (1983) Evidence for the compartmentation of pyruvate metabolism in perfused rat skeletal muscle. Biochem J 216:761–764

    PubMed  CAS  Google Scholar 

  • Seo Y (1984) Effects of extracellular pH on lactate efflux from frog sartorius muscle. Am J Physiol 247:C175–C181

    PubMed  CAS  Google Scholar 

  • Seo Y, Yoshizaki K, Morimoto T (1983) A 1H-nuclear magnetic resonance study on lactate and intracellular pH in frog muscle. Jap J Physiol 33:721–731

    CAS  Google Scholar 

  • Seraydarian K, Mommaerts WFHM, Warner A (1962) The amounts and compartmentation of ADP in muscle. Biochim Biophys Acta 65:443–460

    PubMed  CAS  Google Scholar 

  • Sherry AD, Nunnally RL, Peshock RM (1985) Metabolic studies of pyruvate- and lactate-per-fused guinea pig hearts by 13C-NMR. J Biol Chem 260:9272–9279

    PubMed  CAS  Google Scholar 

  • Shulman GI, Rothman DL, Smith D, Johnson CM, Blair JB, Shulman RG, DeFronzo RA (1985) Mechanism of liver glycogen repletion in vivo by nuclear magnetic resonance spectroscopy. J Clin Invest 76:1229–1236

    PubMed  CAS  Google Scholar 

  • Srivastava DK, Bernhard SA (1986) Enzyme-enzyme interactions and the regulation of metabolic reaction pathways. Curr Top Cell Reg 28:1–68

    CAS  Google Scholar 

  • Steen GR (1986) Impact of symbiotic algae on sea anemone metabolism: analysis by in vivo 31P nuclear magnetic resonance spectroscopy. J Exp Zool 240:315–326

    PubMed  CAS  Google Scholar 

  • Storey KB, Miceli M, Butler KW, Smith CP, Deslauriers R (1984) 31P-NMR studies of the freeze-tolerant larvae of the gall fly, Eurosta solidaginis. Eur J Biochem 142:591–595

    PubMed  CAS  Google Scholar 

  • Swergold RB, Freed JJ, Brown TR (1987) Bicarbonate/CO2 dependent mechanism is important in the regulation of intracellular pH in 3T3 cells. Soc Magn Reson Med, New York Meet, p511

    Google Scholar 

  • Taylor JS, Deutsch C (1983) Fluorinated α-methylamino acids as 19F NMR indicators of intracellular pH. Biophys J 43:261–267

    PubMed  CAS  Google Scholar 

  • Thebault MT, Raffin JP, LeGall JY (1987) In vivo 31P NMR in crustacean muscles: fatigue and recovery in the tail musculature from the prawn Palasmon elegans. Biochem Biophys Res Commun 145:453–459

    PubMed  CAS  Google Scholar 

  • Thoma WJ, Ugurbil K (1987) Saturation-transfer studies of ATP-Pi exchange in isolated perfused rat liver. Biochim Biophys Acta 893:225–231

    PubMed  CAS  Google Scholar 

  • Thomas RC (1978) Ion-sensitive intracellular microelectrodes. How to make and use them. Academic Press, New York London

    Google Scholar 

  • Ugurbil K, Geurnsey DL, Brown TR, Glynn P, Tobke N, Edelman IS (1981) 31P-NMR studies of intact anchorage dependent mouse embryo fibroblasts. Proc Natl Acad Sci USA 78:4843–4847

    PubMed  CAS  Google Scholar 

  • Ugurbil K, Petein M, Maidan R, Michuvski S, Cohn JN, From AH (1984) High resolution proton NMR studies of perfused rat hearts. FEBS Lett 167:73–78

    PubMed  CAS  Google Scholar 

  • Waddell WJ, Butler TC (1959) Calculation of intracellular pH from the distribution of 5,5-dimethyl-2,4-oxazolidinedione (DMO). Application to skeletal muscle of the dog. J Clin Invest 38:720–729

    PubMed  CAS  Google Scholar 

  • Williams SR, Gadian DG, Proctor E, Sprague DB, Talbot DF, Brown FF, Young IR (1985) H nuclear-magnetic-resonance studies of muscle metabolism in vivo. Biochem Soc Trans 13:839–842

    PubMed  CAS  Google Scholar 

  • Wray S, Tofts PS (1986) Direct in vivo measurement of absolute metabolite concentrations using 31P nuclear magnetic resonance spectroscopy. Biochim Biophys Acta 886:399–405

    PubMed  CAS  Google Scholar 

  • Wray S, Wilkie DR (1987) Some novel uses for 14-nitrogen NMR spectroscopy. Soc Magn Reson Med, New York, p 597

    Google Scholar 

  • Yoshizaki K, Seo Y, Hishikawa H (1981) High-resolution proton magnetic resonance spectra of muscle. Biochim Biophys Acta 678:283–291

    PubMed  CAS  Google Scholar 

  • Ziegler R, Roth K (1985) 13C-NMR spectroscopy of larvae of Manduca sexta in vivo. Naturwissenschaften 72:206–207

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ellington, W.R., Wiseman, R.W. (1989). Nuclear Magnetic Resonance Spectroscopic Techniques for the Study of Cellular Function. In: Advances in Comparative and Environmental Physiology. Advances in Comparative and Environmental Physiology, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74510-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74510-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74512-6

  • Online ISBN: 978-3-642-74510-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics