Skip to main content

Metallothionein and Metallothionein-Like Proteins: Physiological Importance

  • Chapter
Advances in Comparative and Environmental Physiology

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 5))

Abstract

Since the initial demonstration of a low-molecular weight cadmium-binding protein in mammals, the research on the function of these proteins, which also can bind Cu, Zn, and Hg, has been focused primarily on their detoxifying properties. Such a direction is understandable, since the synthesis of the proteins can be induced by these potentially toxic metal ions. These proteins, isolated from mammals, have structural characteristics that are very different from those of most proteins, such as having 30% of the amino acid residues as cysteine and having the capacity to bind 7 mol of cadmium, zinc, or mercury or 12 mol copper per mole of protein. The binding of metal to these proteins is through thiol bonding, and therefore, the name metallothionein was proposed and accepted (throughout the text metallothionein will be denoted as MT).

The US Government has the right to retain a nonexclusive royalty-free licence in and to any copyright covering this paper

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Mohanna SY, Nott JA (in press) The accumulation of metals in the hepatopancreas of the shrimp Penaeus semisulcatus de Hann (Crustacea; Decapoda) during the molt cycle. In: Proceedings of the First Arabian Conference on Environment and Pollution, pp 195–207. Allen Press, Oxford

    Google Scholar 

  • Armitage IM, Otvos JD, Briggs RW, Boulanger Y (1982) Structure elucidation of the metal-binding sites in metallothionein by 113Cd NMR. Fed Proc 41:2974–2980

    PubMed  CAS  Google Scholar 

  • Bakka A, Johnson AS, Endresen L, Rugstad HE (1982) Radioresistance in cells with high content of metallothionein. Experientia 38:381–383

    PubMed  CAS  Google Scholar 

  • Barnes RD (1968) Invertebrate zoology. Saunders, Philadelphia, 743 pp

    Google Scholar 

  • Beltramini M, Lerch K (1982) Copper transfer between Neurospora copper metallothionein and type 3 copper apoproteins. FEBS Lett 142:219–222

    PubMed  CAS  Google Scholar 

  • Beltramini M, Lerch K (1983) Spectroscopic studies on Neurospora copper metallothionein. Biochemistry 22:2043–2048

    PubMed  CAS  Google Scholar 

  • Beltramini M, Lerch K, Vasak M (1984) Metal substitution of Neurospora copper-metallothio-nein with bivalent metal ions. Biochemistry 23:3422–3427

    PubMed  CAS  Google Scholar 

  • Bernhard WR, Vasak M, Kagi JHR (1986) Cadmium binding by and metal cluster formation in metallothionein: a differential modification study. Biochemistry 25:1975–1980

    PubMed  CAS  Google Scholar 

  • Boulanger Y, Goodman CM, Forte CP, Fesik SW, Armitage IM (1983) Model for mammalian metallothionein structure. Proc Natl Acad Sci USA 80:1501–1505

    PubMed  CAS  Google Scholar 

  • Brady FO (1982) The physiological function of metallothionein. Trends Biochem Sci 7:143–145

    CAS  Google Scholar 

  • Brady FO, Webb M (1981) Metabolism of zinc and copper in the neonate (zinc, copper)-thionein in the developing rat kidney and testis. J Biol Chem 256:3931–3935

    PubMed  CAS  Google Scholar 

  • Briggs RW, Armitage IM (1982) Evidence for site-selective metal binding in calf liver metallothionein. J Biol Chem 257:1259–1262

    PubMed  CAS  Google Scholar 

  • Brouwer M, Brouwer-Hoexum TM (1989) Reactivation of apohemocyanin by Cu(I)-metallo-thionein. In: D. Winge and D. Hamer (eds) Metal ion homeostasis: molecular biology and chemistry. UCLA Symp Molecular and cellular biology, 98. Liss, New York, pp 247–256

    Google Scholar 

  • Brouwer M, Winge DR, Gray WR (in press) Structural and functional diversity of copper-metallothionein from the American lobster Homarus americanus. J Inorg Biochem

    Google Scholar 

  • Brouwer M, Brouwer-Hoexum TM, Engel DW (1984) Cadmium accumulation by the blue crab, Callinectes sapidus: involvement of hemocyanin and characterization of cadmium-binding proteins. Mar Environ Res 14:71–88

    CAS  Google Scholar 

  • Brouwer M, Whaling P, Engel DW (1986) Copper-metallothioneins in the American lobster, Homarus americanus: potential role as Cu(I) donors to apohemocyanin. Environ Health Perspect 65:93–100

    PubMed  CAS  Google Scholar 

  • Brown DA, Chatel KW (1978) Interactions between cadmium and zinc in cytoplasm of duck liver and kidney. Chem Biol Interact 22:271–279

    PubMed  CAS  Google Scholar 

  • Brown DA, Bay SM, Greenstein DJ, Szalay P, Hershelman GP, Ward CF, Westcott AM, Cross JN (1987) Municipal wastewater contamination in the Southern California Bight. Part II. Cytosolic distribution of contaminants and biochemical effects in fish livers. Mar Environ Res 21:135–161

    CAS  Google Scholar 

  • Buckley JT, Roch M, McCarter JA, Rendell CA, Matheson AT (1982) Chronic exposure of coho salmon to sublethal concentrations of copper-I. Effects on growth, on accumulation and distribution of copper, and on copper tolerance. Comp Biochem Physiol 72C:15–19

    CAS  Google Scholar 

  • Casterline JI, Yip G (1975) The distribution and binding of cadmium in oyster, soybean, and rat liver and kidney. Arch Environ Contamin Toxicol 3:319–329

    CAS  Google Scholar 

  • Cherian MG, Goyer RA (1978) Metallothioneins and their role in the metabolism and toxicity of metals. Life Sci 23:1–10

    PubMed  CAS  Google Scholar 

  • Cherian MG, Nordberg M (1983) Cellular adaptation in metal toxicology and metallothionein. Toxicology 28:1–15

    PubMed  CAS  Google Scholar 

  • Cousins RJ (1982) Relationship of metallothionein synthesis and degradation to intracellular zinc metabolism. In: Foulkes EC (ed) Biological roles of metallothionein. Elsevier/North Holland Biomedical Press, Amsterdam New York, pp 251–260

    Google Scholar 

  • Cousins RJ (1985) Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev 65:238–309

    PubMed  CAS  Google Scholar 

  • Ebadi M, White RJ, Swanson S (1984) The presence and function of zinc-binding in developing and mature brains. In: The neurobiology of zinc, pt. A: physiochemistry, anatomy, and techniques. Liss, New York, pp 39–57

    Google Scholar 

  • Engel DW (1987) Metal regulation and molting in the blue crab, Callinectes sapidus: copper, zinc, and metallothionein. Biol Bull 172:69–82

    CAS  Google Scholar 

  • Engel DW, Brouwer M (1984a) Trace metal-binding proteins in marine molluscs and crustaceans. Mar Environ Res 13:177–194

    CAS  Google Scholar 

  • Engel DW, Brouwer M (1984b) Cadmium-binding proteins in the blue crab, Callinectes sapidus: laboratory-field comparison. Mar Environ Res 14:139–151

    CAS  Google Scholar 

  • Engel DW, Brouwer M (1987) Metal regulation and molting in the blue crab, Callinectes sapidus: metallothionein function in metal metabolism. Biol Bull 173:237–249

    Google Scholar 

  • Engel DW, Roesijadi G (1987) Metallothioneins: a monitoring tool. In: Vernberg FJ, Thurberg FP, Calabrese A, Vernberg WB (eds) Pollution and physiology of estuarine organisms. Univ South Carolina Press, Columbia, pp 421–438

    Google Scholar 

  • Flos R, Bas J, Hidalgo J (11986) Metallothionein in the liver of the small lizard Podarcis mura-lis. Comp Biochem Physiol 83C:93–98

    Google Scholar 

  • Foulkes EC (ed) (1982) The biological roles of metallothionein. Elsevier/North-Holland Biomedical Press, Amsterdam New York

    Google Scholar 

  • Fowler BA, Engel DW, Brouwer M (1986) Purification and characterization studies of cadmium-binding proteins from the American oyster, Crassostrea virginica. Environ Health Perspect 65:63–69

    PubMed  CAS  Google Scholar 

  • Fowler BA, Hildebrand CE, Kojima Y, Webb M (1987) Nomenclature of metallothionein. In: Kagi JHR, Kojima Y, (eds) Metallothionein II. Birkhäuser, Basel, pp 19–22

    Google Scholar 

  • Frazier JM (1986) Cadmium-binding proteins in the mussel Mytilus edulis. Environ Health Perspect 65:39–43

    PubMed  CAS  Google Scholar 

  • Frazier JM, George SG (1983) Cadmium kinetics in oysters, a comparative study of Crassostrea gigas and Ostrea edulis. Mar Biol 76:55–61

    CAS  Google Scholar 

  • Frazier JM, George SG, Overnell J, Coombs TL, Kagi JHR (1985) Characterization of two molecular weight classes of cadmium-binding proteins for the mussel, Mytilus edulis. Comp Biochem Physiol 80C:257–262

    CAS  Google Scholar 

  • Frey MH, Wagner G, Vasak M, Sørensen OW, Neuhaus D, Worgotter E, Kagi JHR, Ernst RR, Wutrich K (1985) Polypeptide-metal cluster connectivities in metallothionein 2 by novel H-113Cd heteronuclear two-dimensional NMR experiments. J Am Chem Soc 107:6847–6851

    CAS  Google Scholar 

  • Friberg L (1984) Cadmium and the kidney. Environ Health Perspect 54:1–11

    PubMed  CAS  Google Scholar 

  • Furey WF, Robbins AH, Clancy LL, Winge DR, Wang BC, Stout CD (1986) Crystal structure of Cd, Zn metallothionein. Science 231:704–710

    PubMed  CAS  Google Scholar 

  • Geller BL, Winge DR (1982) Metal binding sites of rat liver Cu-thionein. Arch Biochem Biophys 213:109–117

    PubMed  CAS  Google Scholar 

  • George SG (1980) Correlation of metal accumulation in mussels with the mechanisms of uptake, metabolism and detoxification: a review. Thalass Jug 16:347–365

    CAS  Google Scholar 

  • George SG, Viarengo A (1985) A model of heavy metal homeostasis and detoxification in mussels. In: Vernberg FJ, Thurberg FP, Calabrese A, Vernberg WB (eds) Marine pollution and physiology: recent advances. Univ South Carolina Press, Columbia, pp 125–144

    Google Scholar 

  • George SG, Carpene E, Coombs TL, Overnell J, Youngson A (1979) Characterisation of cadmium-binding proteins for mussels, Mytilus edulis (L.) exposed to cadmium. Biochim Biophys Acta 580:225–233

    PubMed  CAS  Google Scholar 

  • Goering PL, Fowler BA (1987) Liver Zn-thionein regulates the interaction of Zn and Pb with α-amino-levulinic acid dehydratase. Fed Proc 46:2239

    Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–676

    PubMed  CAS  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84:439–443

    PubMed  CAS  Google Scholar 

  • Hamer DH (1986) Metallothionein. Annu Rev Biochem 55:913–951

    PubMed  CAS  Google Scholar 

  • Hamilton SJ, Mehrle PM (1986) Metallothionein in fish: review of its importance in assessing stress from metal contaminants. Trans Am Fish Soc 115:596–609

    CAS  Google Scholar 

  • Hartmann H-J, Weser U (1977) Copperthionein from fetal bovine liver. Biochim Biophys Acta 491:211–222

    PubMed  CAS  Google Scholar 

  • Hayashi Y, Nakagawa CW, Murasugi A (1986) Unique properties of Cd-binding peptides induced in fission yeast, Schizosaccharomyces pombe. Environ Health Perspect 65:13–19

    PubMed  CAS  Google Scholar 

  • Hennig HF-KO (1986) Metal-binding proteins as metal pollution indicators. Environ Health Perspect 65:175–187

    PubMed  CAS  Google Scholar 

  • Hiatt V, Huff JE (1975) The environmental impact of cadmium: an overview. Int J Environ Stud 7:277–285

    CAS  Google Scholar 

  • Higham DP, Sadler PJ, Scawen MD (1986a) Cadmium-binding proteins in Pseudomonas putida: pseudothioneins. Environ Health Perspect 65:5–11

    PubMed  CAS  Google Scholar 

  • Higham DP, Nicholson JK, Overnell J, Sadler PJ (1986b) NMR studies of crab and plaice metallothioneins. Environ Health Perspect 65:157–165

    PubMed  CAS  Google Scholar 

  • Holtzman NA, Gaumnitz BM (1970) Studies on the rate of release and turnover of ceruloplas-min and apoceruloplasmin in rat plasma. J Biol Chem 245:2354–2358

    PubMed  CAS  Google Scholar 

  • Howard AG, Nickless G (1977) Heavy metal complexation in polluted molluscs. 1. Limpets (Patella vulgata and Patella intermedia). Chem Biol Interact 16:107–114

    PubMed  CAS  Google Scholar 

  • Jenkins KD, Sanders BM (1986) Relationships between free cadmium ion activity in seawater, cadmium accumulation and subcellular distribution, and growth in polychaetes. Environ Health Perspect 65:205–210

    PubMed  CAS  Google Scholar 

  • Johnson WT, Evans GW (1980) Isolation of a (copper, zinc)-thionein from the small intestine of neonatal rats. Biochem Biophys Res Commun 96:10–17

    PubMed  CAS  Google Scholar 

  • Kagi JHR, Kojima Y (eds) (1987) Chemistry and biochemistry of metallothionein. In: Metallothionein IL Birkhäuser, Basel, pp 25–61

    Google Scholar 

  • Kagi JHR, Nordberg M (eds) (1979) Metallothionein. Birkhäuser, Basel, 378 pp

    Google Scholar 

  • Kagi JHR, Vallee BL (1960) Metallothionein: a cadmium- and zinc-containing protein from equine renal cortex. J Biol Chem 235:3460–3465

    PubMed  CAS  Google Scholar 

  • Kagi JHR, Vallee BL (1961) Metallothionein: a cadmium- and zinc-containing protein from equine renal cortex. II. Physicochemical properties. J Biol Chem 236:2435–2442

    PubMed  CAS  Google Scholar 

  • Kagi JHR, Vasak M, Lerch K, Gilg DEO, Hunyiker P, Bernhard WR, Good M (1984) Structure of mammalian metallothionein. Environ Health Perspect 54:93–103

    PubMed  CAS  Google Scholar 

  • Karin M (1985) Metallothioneins: proteins in search of function. Cell 41:9–10

    PubMed  CAS  Google Scholar 

  • Karin M, Herschman HR, Weinstein D (1980a) Primary induction of metallothionein by dexa-methasone in cultured rat hepatocytes. Biochem Biophys Res Commun 92:1052–1059

    PubMed  CAS  Google Scholar 

  • Karin M, Anderson RD, Slater E, Smith K, Herschman HR (1980b) Metallothionein mRNA induction in HeLa cell in response to zinc or dexamethasone is a primary induction response. Nature (London) 286:295–297

    CAS  Google Scholar 

  • Karin M, Anderson RD, Herschman HR (1981) Induction of metallothionein mRNA in HeLa cells by dexamethasone and by heavy metals. Eur J Biochem 118:527–531

    PubMed  CAS  Google Scholar 

  • Kertesz O, Rotilio G, Brunori M, Zito R, Antonini E (1972) Kinetics of reconstitution of polyphenoloxidase from apoenzyme and copper. Biochem Biophys Res Commun 49:1208–1214

    PubMed  CAS  Google Scholar 

  • Keyhani E, Keyhani J (1975) Cytochrome c oxidase biosynthesis and assembly in Candida utilis yeast cells: function of copper in the assembly of active cytochrome c oxidase. Arch Biochem Biophys 167:596–602

    PubMed  CAS  Google Scholar 

  • Klaverkamp JF, MacDonald WA, Duncan DA, Wagermann R (1984) Metallothionein and acclimation to heavy metals in fish: a review. In: Cairns VW, Hodson PV, Nriagu JO (eds) Contaminant effects on fisheries. John Wiley & Sons, New York, pp 99–114

    Google Scholar 

  • Klerks PL, Levington J (1988) Effects of heavy metals in a polluted aquatic environment. In: Levin SA, Kelly CR, Harwell MA (eds) Ecotoxicology: problems and approaches. Springer, Berlin Heidelberg New York Tokyo, pp 57–84

    Google Scholar 

  • Klerks PL, Weis JS (1987) Genetic adaptation to heavy metals in aquatic organisms: a review. Environ Pollut 45:173–205

    PubMed  CAS  Google Scholar 

  • Kojima Y, Berger C, Vallee B, Kagi JHR (1976) Amino-acid sequence of equine renal metallothionein-1B. Proc Natl Acad Sci USA 73:3413–3417

    PubMed  CAS  Google Scholar 

  • Konings WN, van Driel R, van Bruggen EFJ, Gruber M (1969) Structure and properties of hemocyanins. V. Binding of oxygen and copper in Helix pomatia hemocyanin. Biochim Biophys Acta 194:55–66

    PubMed  CAS  Google Scholar 

  • Langston WJ, Zhou M (1986) Evaluation of the significance of metal-binding proteins in the gastropod Littorina littorea. Mar Biol 92:505–515

    CAS  Google Scholar 

  • Lastowski-Perry D, Otto E, Maroni G (1985) Nucleotide sequence and expression of a Droso-phila metallothionein. J Biol Chem 260:1527–1530

    PubMed  CAS  Google Scholar 

  • Lerch K (1980) Copper metallothionein, a copper-binding protein from Neurospora crassa. Nature (London) 284:368–370

    CAS  Google Scholar 

  • Lerch K, Ammer D, Olafson RW (1982) Crab metallothionein: primary structures of metallothionein 1 and 2. J Biol Chem 257:2420–2426

    PubMed  CAS  Google Scholar 

  • Li TY, Kraker AJ, Shaw CF, Petering DH (1980) Ligand substitution reactions of metallothio-neins with EDTA and apo-carbonic anhydrase. Proc Natl Acad Sci USA 77:6334–6338

    PubMed  CAS  Google Scholar 

  • Margoshes M, Vallee BL (1957) A cadmium protein from the equine kidney cortex. J Am Chem Soc 79:4813–4814

    CAS  Google Scholar 

  • Maroni G, Otto E, Lastowski-Perry D (1986) Molecular and cytogenetic characterization of a metallothionein gene of Drosophila. Genetics 112:493–504

    PubMed  CAS  Google Scholar 

  • Matsubara J, Shida T, Ishioka K, Egawa S, Inada T, Machida K (1986) Protective effect of zinc against lethality in irradiated mice. Environ Res 41:558–567

    PubMed  CAS  Google Scholar 

  • Matsubara J, Tajima Y, Karasawa M (1987) Promotion or radioresistance by metallothionein induction prior to irradiation. Environ Res 43:66–74

    PubMed  CAS  Google Scholar 

  • McCarter JA, Matheson AT, Roch M, Olafson RW, Buckley JT (1982) Chronic exposure of coho salmon to sublethal concentrations of copper-II, distribution of copper between highland low-molecular weight proteins in liver cytosol and the possible role of metallothionein in detoxification. Comp Biochem Physiol 72C:21–26

    CAS  Google Scholar 

  • Mohlenberg F, Jensen A (1980) The ecotoxicology of cadmium in fresh and sea water and water pollution with cadmium in Denmark. Jensen, Kobenhavn, 42 pp

    Google Scholar 

  • Mokdad R, Debec A, Wegnez M (1987) Metallothionein genes in Drosophila melanogaster constitute a dual system. Proc Natl Acad Sci USA 84:2658–2662

    PubMed  CAS  Google Scholar 

  • Munger K, Lerch K (1985) Copper metallothionein from the fungus Agaricus bisporus: chemical and spectroscopic properties. Biochemistry 24:6751–6755

    Google Scholar 

  • Nemer M, Wilkinson DG, Travaglini EC, Sternberg EJ (1985) Sea urchin metallothionein sequence: key to an evolutionary diversity. Proc Natl Acad Sci USA 82:4992–4994

    PubMed  CAS  Google Scholar 

  • Nettesheim DG, Engeseth HR, Otvos JD (1985) Products of metal exchange reactions of metallothionein. Biochemistry 24:6744–6751

    PubMed  CAS  Google Scholar 

  • Nielson KB, Winge DR (1983) Order of metal binding in metallothionein. J Biol Chem 258:13063–13069

    PubMed  CAS  Google Scholar 

  • Nielson KB, Winge DR (1984) Preferential binding of copper to the β-domain of metallothionein. J Biol Chem 259:4941–4946

    PubMed  CAS  Google Scholar 

  • Nielson KB, Atkin CL, Winge DR (1985) Distinct metal-binding configurations in metallothionein. J Biol Chem 260:5342–5350

    PubMed  CAS  Google Scholar 

  • Noel-Lambot F (1976) Distribution of cadmium, zinc and copper in the mussel Mytilis edulis. Existence of cadmium-binding proteins similar to metallothionein. Experientia 32:324–326

    CAS  Google Scholar 

  • Noel-Lambot F, Bouquegneau JM, Frankenne F, Desteche A (1980) Cadmium, zinc, and copper accumulation in limpets (Patella vulgata) from the Bristol Channel with special reference to metallothioneins. Mar Ecol Progr Ser 2:81–89

    CAS  Google Scholar 

  • Oh SH, Deagen JT, Whanger PD, Weswig PH (1978) Biological function of metallothionein. V. Its induction in rats by various stresses. Am J Physiol 3:E282–E285

    Google Scholar 

  • Olafson RW, Sims RG, Boto KG (1979) Isolation and characterization of the heavy metal-binding protein metallothionein from marine invertebrates. Comp Biochem Physiol 62B:407–416

    CAS  Google Scholar 

  • Olafson RW, Loya S, Sims RG (1980) Physiological parameters of prokaryotic metallothionein induction. Biochem Biophys Res Commun 95:1495–1503

    PubMed  CAS  Google Scholar 

  • Olsson PE, Haux C (1986) Increased hepatic metallothionein content correlates to cadmium accumulation in environmentally exposed perch (Perca fulviatilis). Aqu Toxicol 9:231–242

    CAS  Google Scholar 

  • Otvos JD, Armitage IM (1980) Structure of the metal clusters in rabbit liver metallothionein. Proc Natl Acad Sci USA 77:7094–7098

    PubMed  CAS  Google Scholar 

  • Otvos JD, Olafson RW, Armitage IM (1982) Structure of an invertebrate metallothionein from Scylla serrata. J Biol Chem 257:2427–2431

    PubMed  CAS  Google Scholar 

  • Otvos JD, Engeseth HR, Wehrli S (1985) Preparation and 113Cd NMR studies of homogeneous reconstituted metallothionein: reaffirmation of the two-cluster arrangement of metals. Biochemistry 24:6735–6740

    PubMed  CAS  Google Scholar 

  • Overnell J (1986) The occurrence of cadmium in crabs (Cancer pagurus) and the isolation and properties of cadmium metallothionein. Environ Health Perspect 65:101–106

    PubMed  CAS  Google Scholar 

  • Overnell J, Trewhella E (1979) Evidence for natural occurrence of (cadmium, copper)-metallo-thionein in the crab Cancer pagurus. Comp Biochem Physiol 64C:69–76

    CAS  Google Scholar 

  • Petering DH, Fowler BA (1986) Discussion summary. Roles of metallothionein and related proteins in metal metabolism and toxicity: problems and perspectives. Environ Health Perspect 65:217–224

    PubMed  CAS  Google Scholar 

  • Rainbow PS, Scott AG (1979) Two heavy metal-binding proteins in the midgut gland of the crab, Cancer maenas. Mar Biol 55:143–150

    CAS  Google Scholar 

  • Ray S, White M (1981) Metallothionein-like protein in lobsters (Homarus americanus). Chemosphere 10:1205–1213

    CAS  Google Scholar 

  • Ridlington JW, Fowler BA (1979) Isolation and partial characterization of a cadmium-binding protein from the American oyster (Crassostrea virginica). Chem Biol Interact 25:127–138

    PubMed  CAS  Google Scholar 

  • Ridlington JW, Chapman DC, Goeger DE, Whanger PD (1981) Metallothionein and Cu-chelatin: characterization of metal-binding proteins from tissues of four marine animals. Comp Biochem Physiol 70B:93–104

    CAS  Google Scholar 

  • Rigo A, Viglino P, Brunori M, Cocco D, Calabrese L, Rotilio G (1978) The binding of copper ions to copper-free bovine superoxide dismutase. Biochem J 169:277–280

    PubMed  CAS  Google Scholar 

  • Roesijadi G (1981) The significance of low molecular weight, metallothionein-like proteins in marine invertebrates: current status. Mar Environ Res 4:167–179

    CAS  Google Scholar 

  • Roesijadi G, Fellingham GW (1987) Influence of Cu, Cd, and Zn preexposure on Hg toxicity in the mussel Mytilus edulis. Can J Fish Aqu Sci 44:680–684

    CAS  Google Scholar 

  • Roesijadi G, Drum AS, Thomas JT, Fellingham GW (1982) Enhanced mercury tolerance in marine mussels and relationship to low molecular weight, mercury-binding proteins. Mar Pollut Bull 13:250–253

    CAS  Google Scholar 

  • Rupp H, Weser U (1978) Circular dichroism of metallothioneins. A structural approach. Biochim Biophys Acta 533:209–226

    PubMed  CAS  Google Scholar 

  • Stone H, Overnell J (1985) Non-metallothionein cadmium binding proteins. Comp Biochem Physiol 80C:9–14

    CAS  Google Scholar 

  • Suzuki KT, Tanaka Y (1983) Induction of metallothionein and effect on essential metals in cadmium-loaded frog Xenopus laevis. Comp Biochem Physiol 74C:311–317

    CAS  Google Scholar 

  • Talbot V, Magee RJ (1978) Naturally-occurring heavy metal binding proteins in invertebrates. Arch Environ Contamin Toxicol 7:73–81

    CAS  Google Scholar 

  • Templeton DM, Banerjee D, Cherian MG (1985) Metallothionein synthesis and localization in relation to metal storage in rat liver during gestation. Can J Biochem Cell Biol 63:16–22

    PubMed  CAS  Google Scholar 

  • Thornalley PJ, Vasak M (1985) Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta 827:36–44

    PubMed  CAS  Google Scholar 

  • Udom AO, Brady FO (1980) Reactivation in vitro of zinc-requiring apo-enzymes by rat liver zinc-thionein. Biochem J 187:329–335

    PubMed  CAS  Google Scholar 

  • Uthe JF, Zitko V (eds) (1980) Cadmium pollution of Belledune Harbor, New Brunswick, Canada. Can Tech Rep Fish Aqu Sci 963, 107 pp

    Google Scholar 

  • Vallee BL (1979) Metallothionein: historical review and perspectives. In: Kagi JHR, Nordberg M (eds) Metallothionein. Birkhäuser, Basel, pp 19–40

    Google Scholar 

  • Vallee BL (1987) Implications and inferences of metallothionein structure. In: Kagi JHR, Kojima Y (eds) Metallothionein IL Birkhäuser, Basel, pp 5–16

    Google Scholar 

  • Vasak M, Kagi JHR (1981) Metal thiolate clusters in cobalt (II)-metallothionein. Proc Natl Acad Sci USA 78:6709–6713

    PubMed  CAS  Google Scholar 

  • Vasak M, Kagi JHR (1983) Spectroscopic properties of metallothionein. Metal Ions Biol Syst 15:213–273

    CAS  Google Scholar 

  • Vasak M, Kawkes GE, Nicholson JK, Sadler PJ (1985) 113Cd NMR studies of reconstituted seven-cadmium metallothionein: evidence for structural flexibility. Biochemistry 24:740–747

    PubMed  CAS  Google Scholar 

  • Villalobos J, Krezoski S, Shaw CF, Petering DH (1986) Probable ligand substitution reactivity of zinc-metallothionein in Ehrlich cells. Fed Proc 45:1663

    Google Scholar 

  • Webb M, Cain K (1982) Functions of metallothionein. Biochem Pharmacol 31:137–142

    PubMed  CAS  Google Scholar 

  • Weidow MA, Kneip TJ, Garte SJ (1982) Cadmium-binding proteins from the blue crab (Calli-nectes sapidus) environmentally exposed to cadmium. Environ Res 28:164–170

    Google Scholar 

  • Weser U, Rupp H, Donay F, Linnemann F, Voelter W, Voetsch W, Jung G (1973) Characterization of Cd, Zn-thionein (metallothionein) isolated from rat and chicken liver. Eur J Biochem 39:127–140

    PubMed  CAS  Google Scholar 

  • Winge DR, Miklossy KA (1982) Domain nature of metallothionein. J Biol Chem 257:3741–3746

    Google Scholar 

  • Yamamura M, Suzuki KT (1984a) Induction and characterization of metallothionein in the liver and kidney of Japanese quail. Comp Biochem Physiol 77A:101–106

    Google Scholar 

  • Yamamura M, Suzuki KT (1984b) Isolation and characterization of metallothionein from the tortoise Clemmys mutica. Comp Biochem Physiol 79G:63–69

    Google Scholar 

  • Young JS, Roesijadi G (1983) Reparatory adaptation to copper-induced injury and occurrence of a copper-binding protein in the polychaete, Eudistylia vancouveri. Mar Pollut Bull 14:30–32

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Engel, D.W., Brouwer, M. (1989). Metallothionein and Metallothionein-Like Proteins: Physiological Importance. In: Advances in Comparative and Environmental Physiology. Advances in Comparative and Environmental Physiology, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74510-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74510-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74512-6

  • Online ISBN: 978-3-642-74510-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics