Skip to main content

Chemosensory Systems in Lower Organisms: Correlations with Internal Receptor Systems for Neurotransmitters and Hormones

  • Chapter
Advances in Comparative and Environmental Physiology

Abstract

The presence of specific chemical substances in the environment evokes behavioral responses in many lower eukaryotic organisms such as protozoans and invertebrates (for reviews, see Mackie and Grant 1974, Gleeson 1978, Atema 1985, Carr 1987). Beginning with Haldane (1954), investigators have noted that several of the chemical substances evoking these responses in lower life forms include some of the very same compounds that function internally as neurotransmitters, modulators, or hormones (see Table 1). Hence, substances such as acetylcholine and the adenine nucleotides may evoke behavioral responses when present in an external aquatic environment just as they evoke physiological responses when present in a synaptic cleft.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ache BW (1982) Chemoreeeption and thermoreception. In: Atwood HL, Sandeman DC (eds) The biology of Crustacea. Academic Press, New York London, pp 369–398

    Google Scholar 

  • Allison P, Dorsett D (1977) Behavioral studies on chemoreception in Balanus hameri. Mar Behav Physiol 4:205–217

    Google Scholar 

  • Atema J (1985) Chemoreception in the sea: adaptations of chemoreceptors and behavior to aquatic stimulus conditions. Soc Exp Mar Biol Symp 39:387–423

    CAS  Google Scholar 

  • Baloun AJ, Morse DE (1984) Ionic control of settlement and metamorphosis in larval Haliotis rufescens (Gastropoda). Biol Bull 167:124–138

    CAS  Google Scholar 

  • Barber JT, Ellgard EG, Herskowitz K (1982) The attraction of larvae of Culex pipiens quinquefasciatus Say to ribonucleic acids and nucleotides. J Insect Physiol 18:585–588

    Google Scholar 

  • Barnard EA, Darlison MG, Seeburg P (1987) Molecular biology of the GABAA receptor: the receptor/channel superfamily. Trends Neurosci 10:502–509

    CAS  Google Scholar 

  • Bauer U, Hatt H (1980) Demonstration of three different types of chemosensitive units in the crayfish claw using a computerized evaluation. Neurosci Lett 17:209–214

    PubMed  CAS  Google Scholar 

  • Bauer U, Dudel J, Hatt H (1981) Characteristics of single chemoreceptive units sensitive to amino acids and related substances in the crayfish leg. J Comp Physiol A 144:67–74

    CAS  Google Scholar 

  • Baxter G, Morse DE (1987) G protein and diacylglycerol regulate metamorphosis of planktonic molluscan larvae. Proc Natl Acad Sci USA 84:1867–1870

    PubMed  CAS  Google Scholar 

  • Bender A, Sprague GF Jr (1986) Yeast peptide pheromones, a-factor and α-factor, activate a common response mechanism in their target cells. Cell 47:929–937

    PubMed  CAS  Google Scholar 

  • Bender AS, Wu PH, Phillis JW (1981) The rapid uptake and release of [3H]adenosine by rat cerebral cortical synaptosomes. J Neurochem 36:651–660

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1985) The molecular basis of communication within the cell. Sci Am 253:142–152

    PubMed  CAS  Google Scholar 

  • Bonner JT (1983) Chemical signals in social amoebae. Sci Am 248:114–120

    CAS  Google Scholar 

  • Borden LA, Czajkowski C, Chan CY, Farb DH (1984) Benzodiazepine receptor synthesis and degradation by neurons in culture. Science 226:857–860

    PubMed  CAS  Google Scholar 

  • Boudreau JC (1987) Mammalian neural taste responses to amino acids and nucleotides. In: Kawamura Y, Kare MR (eds) Umami: a basic taste. Dekker, New York, pp 201–217

    Google Scholar 

  • Boudreau JC, Anderson W, Oravec J (1975) Chemical stimulus determinants of cat geniculate ganglion chemoresponsive group II unit discharge. Chem Senses Flav 1:495–517

    CAS  Google Scholar 

  • Bowery NG, Hill DR, Hudson AL, Doble A, Middlemiss DN, Shaw J, Turnbull M (1980) (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature (London) 283:92–94

    PubMed  CAS  Google Scholar 

  • Bowery NG, Hill DR, Hudson AL (1983) Characteristics of GABA receptor binding sites on rat whole brain synaptic membranes. Br J Pharmacol 78:191–206

    PubMed  CAS  Google Scholar 

  • Brown CM, Burnstock G (1981) Evidence in support of the P1/P2 purinoceptor hypothesis in the guinea-pig taenia coli. Br J Pharmacol 73:617–624

    PubMed  CAS  Google Scholar 

  • Brown ID, Kerkut GA (1981) A study of the chemokinetic effects of various pharmacological agents upon Tetrahymena vorax. Comp Biochem Physiol 69C:275–280

    CAS  Google Scholar 

  • Bruch RC, Kalinoski DL (1987) Interaction of GTP-binding proteins with chemosensory receptors. J Biol Chem 262:2401–2404

    PubMed  CAS  Google Scholar 

  • Burger RM, Lowenstein JM (1970) Preparation and properties of 5′-nucleotidase from smooth muscle of small intestine. J Biol Chem 245:6274–6280

    PubMed  CAS  Google Scholar 

  • Burke RD (1983) The induction of marine invertebrate larvae: stimulus and response. Can J Zool 61:1701–1719

    Google Scholar 

  • Burke RD (1984) Pheromonal control of metamorphosis in the Pacific sand dollar Dendraster excentricus. Science 225:442–443

    PubMed  CAS  Google Scholar 

  • Burnstock G (1978) A basis for distinguishing two types of purinergic receptors. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones. Raven, New York, pp 107–118

    Google Scholar 

  • Burnstock G (1980) Purinergic nerves and receptors. Prog Biochem Pharmacol 16:141–154

    PubMed  CAS  Google Scholar 

  • Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2-purinocep-tors? Gen Pharmacol 16:433–440

    PubMed  CAS  Google Scholar 

  • Carr WES (1967) Chemoreception in the mud snail Nassarius obsoletus. II. Identification of stimulatory substances. Biol Bull 13:106–127

    Google Scholar 

  • Carr WES (1987) The molecular nature of chemical stimuli in the aquatic environment. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, Berlin Heidelberg New York Tokyo, pp 3–27

    Google Scholar 

  • Carr WES, Derby CD (1986) Behavioral chemoattractants for the shrimp, Palaemonetes pugio: identification of active components in food extracts and evidence of synergistic mixture interactions. Chem Senses 11:49–64

    CAS  Google Scholar 

  • Carr WES, Thompson HW (1983) Adenosine 5′-monophosphate, an internal regulatory agent, is a potent chemoattractant for a marine shrimp. J Comp Physiol A 153:47–53

    CAS  Google Scholar 

  • Carr WES, Gleeson RA, Ache BW, Milstead ML (1986) Olfactory receptors of the spiny lobster: ATP-sensitive cells with similarities to P2-type purinoceptors of vertebrates. J Comp Physiol A 158:331–338

    CAS  Google Scholar 

  • Carr WES, Ache BW, Gleeson RA (1987) Chemoreceptors of crustaceans: similarities to receptors for neuroactive substances in internal tissues. Environ Health Perspect 71:31–46

    PubMed  CAS  Google Scholar 

  • Case J, Gwilliam GF (1961) Amino acid sensitivity of the dactyl chemoreceptors of Carcinides maenas. Biol Bull 121:449–455

    CAS  Google Scholar 

  • Changeux J-P, Revah F (1987) The acetylcholine receptor molecule: allosteric sites and the ion channel. Trends Neurosci 10:245–250

    CAS  Google Scholar 

  • Chase R, Wells MJ (1986) Chemotactic behaviour in the octopus. J Comp Physiol 158:375–381

    Google Scholar 

  • Chia F-S (1978) Perspective: settlement and metamorphosis of marine invertebrate larvae. In: Chia F-S, Rice ME (eds) Settlement and metamorphosis of marine invertebrate larvae. Elsevier/North Holland Biomedical Press, Amsterdam New York, pp 283–285

    Google Scholar 

  • Chia F-S, Koss R (1982) Fine structure of the larval rhinopores of the nudibranch, Rostanga pulchra, with an emphasis on the sensory receptor cells. Cell Tissue Res 25:235–248

    Google Scholar 

  • Choi DW, Farb DH, Fischbach GD (1981) Chlordiazepoxide selectively potentiates GABA conductance of spinal cord and sensory neurons in cell culture. J Neurophysiol 45:621–631

    PubMed  CAS  Google Scholar 

  • Coon SL, Bonar DB, Weiner RM (1985) Induction of settlement and metamorphosis of the Pacific oyster, Crassostrea gigas (Thunberg), by L-DOPA and catecholamines. J Exp Mar Biol Ecol 94:211–221

    CAS  Google Scholar 

  • Crisp DJ (1974) Factors influencing settlement of marine invertebrate larvae. In: Grant PT, Mackie AM (eds) Chemoreception in marine organisms. Academic Press, New York London, pp 177–265

    Google Scholar 

  • Croll RG (1983) Gastropod chemoreception. Biol Rev 58:293–319

    Google Scholar 

  • Csaba G (1980) Phylogeny and ontogeny of hormone receptors: the selection theory of receptor formation and hormonal imprinting. Biol Rev Cambridge Philos Soc 55:47–63

    PubMed  CAS  Google Scholar 

  • Csaba G, Sudar F, Nagy SU, Dobozy O (1977) Localization of hormone receptors in Tetrahymena. Protoplasmia 91:179–181

    CAS  Google Scholar 

  • Cusack NJ, Pearson JD, Gordon JL (1983) Stereoselectivity of ectonucleotidases on vascular endothelial cells. Biochem J 214:975–981

    PubMed  CAS  Google Scholar 

  • Darmon M, Barra J, Brächet P (1978) The role of phosphodiesterase in aggregation of Dictyostelium discoideum. J Cell Sci 31:233–243

    PubMed  CAS  Google Scholar 

  • de Castro SL, Oliveira MM (1987) Radioligand binding characterization of beta-adrenergic receptors in the protozoa Trypanosoma cruzi. Comp Biochem Physiol 87C:5–8

    Google Scholar 

  • Derby CD, Ache BW (1984) Quality coding of a complex odorant in an invertebrate. J Neurophysiol 51:906–924

    PubMed  CAS  Google Scholar 

  • Derby CD, Atema J (1982a) Chemosensitivity of walking legs of the lobster Homarus america-nus: neurophysiological response spectrum thresholds. J Exp Biol 98:303–315

    CAS  Google Scholar 

  • Derby CD, Atema J (1982b) Narrow-spectrum chemoreceptor cells in the walking legs of the lobster Homarus americanus: taste specialists. J Comp Physiol A 146:181–189

    CAS  Google Scholar 

  • Derby CD, Carr WES, Ache BW (1984) Purinergic olfactory cells of crustaceans: response characteristics and similarities to internal purinergic cells of vertebrates. J Comp Physiol A 155:341–349

    Google Scholar 

  • Dietzel C, Kurjan J (1987) The yeast SCG1 gene: a G α-like protein implicated in the a- and α-factor response pathway. Cell 50:1001–1010

    PubMed  CAS  Google Scholar 

  • Dolci S, Eusebi F, Siracusa G (1985) γ-amino butyric-n-acid sensitivity of mouse and human oocytes. Dev Biol 109:242–246

    PubMed  CAS  Google Scholar 

  • Dolphin AC (1987) Nucleotide binding proteins in signal transduction and disease. Trends Neurosci 10:53–57

    CAS  Google Scholar 

  • Dolphin AC, Scott RH (1987) Calcium channel currents and their inhibition by (-)baclofen in rat sensory neurones: modulation by guanine nucleotides. J Physiol (London) 386:1–17

    CAS  Google Scholar 

  • Doughty MJ (1978) Control of ciliary activity in Paramecium — II. Modification of K+-induced ciliary reversal by cholinergic ligands and quaternary ammonium compounds. Comp Biochem Physiol 61C:375–384

    CAS  Google Scholar 

  • Doughty MJ (1979) Control of ciliary activity in Paramecium. — III. Evidence for specific membrane binding sites for ions and cholinergic ligands. Comp Biochem Physiol 63C:183–197

    CAS  Google Scholar 

  • Doughty MJ, Dodd GH (1978) Chemical modification of the excitable membrane of Paramecium. Effect of a cross-linking agent. Comp Biochem Physiol 59C:21–31

    CAS  Google Scholar 

  • Eckert R, Brehm P (1979) Ionic mechanisms of excitation in Paramecium. Annu Rev Biophys Bioeng 8:353–383

    PubMed  CAS  Google Scholar 

  • Eusebi F, Pasetto N, Siracusa G (1984) Acetylcholine receptors in human oocytes. J Physiol (London) 346:321–330

    CAS  Google Scholar 

  • Fine-Levy JB, Derby CD, Daniel PC (1987) Chemosensory discrimination: behavioral abilities of the spiny lobster. Ann N Y Acad Sci 510:280–283

    Google Scholar 

  • Forward RB Jr (1977) Effects of neurochemicals upon a dinoflagellate photoresponse. J Pro-tozool 24:401–405

    CAS  Google Scholar 

  • Franke J, Kessin RH (1981) The cyclic nucleotide phosphodiesterase inhibitory protein of Dic-tyostelium discoideum: purification and characterization. J Biol Chem 256:7628–7637

    PubMed  CAS  Google Scholar 

  • Frazier WA, Meyers-Hutchins BL, Jamieson GA, Garvin NJ (1984) Chemotactic transduction in the cellular slime molds. In: Elson E, Frazier W, Glaser L (eds) Cell membranes: methods and reviews. Plenum, New York, pp 1–41

    Google Scholar 

  • Friend MG, Smith JJB (1982) ATP analogs and other phosphate compounds as gorging stimulants for Rhodnius prolixus. J Insect Physiol 28:371–376

    CAS  Google Scholar 

  • Friend WG, Stoffolano JG (1983) Feeding responses of the horsefly, Tabanus nigrovittatus, to phagostimulants. Physiol Entomol 8:377–383

    CAS  Google Scholar 

  • Fuzessery ZM, Carr WES, Ache BW (1978) Antennular chemosensitivity in the spiny lobster, Panulirus argus: studies of taurine sensitive receptors. Biol Bull 154:226–240

    CAS  Google Scholar 

  • Gainer H, Russell JT, Loh YP (1985) The enzymology and intracellular organization of peptide precursor processing: the secretory vesicle hypothesis. Prog Neuroendocrinol 40:171–184

    CAS  Google Scholar 

  • Galun R, Koontz LC, Gwadz RW, Ribeiro JMC (1985) Effect of ATP analogues on the gorging response of Aedes aegypti. Physiol Entomol 10:275–281

    CAS  Google Scholar 

  • Gerisch G (1987) Cyclic AMP and other signals controlling cell development and differentiation in Dictyostelium. Annu Rev Biochem 56:853–879

    PubMed  CAS  Google Scholar 

  • Gerisch G, Malchow D, Hess B (1974) Cell communication and cyclic-AMP regulation during aggregation of the slime mold, Dictyostelium discoideum. In: Jaenicke L (ed) Biochemistry of sensory functions. Springer, Berlin Heidelberg New York, pp 279–298

    Google Scholar 

  • Gillo B, Lass Y, Nadler E, Oron Y (1987) The involvement of inositol 1,4,5-trisphosphate and calcium in the two-component response to acetylcholine in Xenopus oocytes. J Physiol (London) 392:349–361

    CAS  Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649

    PubMed  CAS  Google Scholar 

  • Gleeson RA (1978) Functional adaptations in chemosensory systems. In: Ali MA (ed) Sensory ecology: review and perspectives. Plenum, New York, pp 291–317

    Google Scholar 

  • Gleeson RA, Ache BW (1985) Amino acid suppression of taurine-sensitive chemosensory neurons. Brain Res 335:99–107

    PubMed  CAS  Google Scholar 

  • Gleeson RA, Trapido-Rosenthal HG, Carr WES (1987) A taurine receptor model: taurine-sensitive olfactory cells in the lobster. In: Huxtable RJ, Franconi F, Giotti A (eds) The biology of taurine. Plenum, New York, pp 253–263

    Google Scholar 

  • Gocayne J, Robinson DA, FitzGerald MG, Chung F-Z, Kerlavage AR, Lentes K-U, Lai J, Wang C-D, Fraser CM, Venter JG (1987) Primary structure of rat cardiac β-adrenergic and muscarinic cholinergic receptors obtained by automated DNA sequence analysis: further evidence for a multigene family. Proc Natl Acad Sci USA 84:8296–8300

    PubMed  CAS  Google Scholar 

  • Gordon EL, Pearson JD, Slakey LL (1986) The hydrolysis of extracellular adenine nucleotides by cultured endothelial cells from pig aorta. J Biol Chem 261:15496–15504

    PubMed  CAS  Google Scholar 

  • Hadfield MG (1977) Chemical interactions in larval settling of a marine gastropod. In Faulkner DJ, Fenical WH (eds) Marine natural products chemistry. Plenum, New York, pp 403–413

    Google Scholar 

  • Hadfield MG (1978) Metamorphosis in marine molluscan larvae: an analysis of stimulus and response. In: Chia F-S, Rice ME (eds) Settlement and metamorphosis of marine invertebrate larvae. Elsevier/North Holland Biomedical Press, Amsterdam New York, pp 165–175

    Google Scholar 

  • Hadfield MG, Scheuer D (1985) Evidence for a soluble metamorphic inducer in Phestilla: ecological, chemical and biological data. Bull Mar Sci 37:556–566

    Google Scholar 

  • Haefely W, Polc P, Schaffner R, Keller H, Pieri L, Monier H (1979) Facilitation of GABA-ergic transmission by drugs. In: Krogsgaard-Larsen P, Scheel-Kruger J, Kofod H (eds) GABA neurotransmitters: pharmacochemical, biochemical, and pharmacological aspects. Academic Press, New York, London, pp 357–375

    Google Scholar 

  • Hagiwara SK, Kusano K, Saito N (1961) Membrane changes of Onchidium nerve cells in potassium-rich media. J Physiol (London) 155:470–489

    CAS  Google Scholar 

  • Haldane JBS (1954) La signalisation animale. Ann Biol 58:89–98

    Google Scholar 

  • Hall ZW (1987) Three of a kind: the β-adrenergic receptor, the muscarinic acetylcholine receptor, and rhodopsin. Trends Neurosci 10:99–101

    CAS  Google Scholar 

  • Harpaz S, Kahan D, Galun R, Moore I (1987) Responses of freshwater prawn, Macrobrachium rosenbergii, to chemical attractants. J Chem Ecol 13:1957–1965

    CAS  Google Scholar 

  • Hatt H, Bauer U (1982) Electrophysiological properties of pyridine receptors in the crayfish walking leg. J Comp Physiol A 148:221–224

    CAS  Google Scholar 

  • Hatt H, Schmiedel-Jakob I (1984) Electrophysiological studies of pyridine-sensitive units on the crayfish walking leg. I. Characteristics of stimulatory molecules. J Comp Physiol A 154:855–863

    CAS  Google Scholar 

  • Hatt H, Schmiedel-Jakob I (1985) Specific antagonists at the pyridine receptor: evidence from electrophysiological studies with acetylpyridines. Chem Senses 10:317–323

    CAS  Google Scholar 

  • Hauser DCR, Levandowski, Glassgold JM (1975) Ultrasensitive chemosensory responses by a protozoan to epinephrine and other neurochemicals. Science 190:285–286

    PubMed  CAS  Google Scholar 

  • Heldman J, Lancet D (1986) Cyclic AMP-dependent protein phosphorylation in chemosensory neurons: identification of cyclic nucleotide-regulated phosphoproteins in olfactory cilia. J Neurochem 47:1527–1533

    PubMed  CAS  Google Scholar 

  • Hellung-Larsen P, Leick V, Tommerup N (1986) Chemoattraction in Tetrahymena: on the role of chemokinesis. Biol Bull 170:357–367

    CAS  Google Scholar 

  • Herskowitz I, Marsh L (1987) Conservation of a receptor/signal transduction system. Cell 50:995–996

    PubMed  CAS  Google Scholar 

  • Hertz L (1978) Kinetics of adenosine uptake into astrocytes. J Neurochem 31:55–62

    PubMed  CAS  Google Scholar 

  • Hill DR (1985) GABAB receptor modulation of adenylate cyclase activity in rat brain slices. Br J Pharmacol 84:249–257

    PubMed  CAS  Google Scholar 

  • Hinrichsen RD, Schultz JE (1988) Paramecium: a model system for the study of excitable cells. Trends Neurosci 11:27–32

    PubMed  CAS  Google Scholar 

  • Hirata KY, Hadfield MG (1986) The role of choline in metamorphic induction of Phestilla (Gastropoda, Nudibranchia). Comp Biochem Physiol 84C:15–21

    CAS  Google Scholar 

  • Hodgkin AL, Horowicz P (1959) The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol (London) 148:127–160

    CAS  Google Scholar 

  • Huque T, Bruch RC (1986) Odorant- and guanine nucleotide-stimulated phosphoinositide turnover in olfactory cilia. Biochem Biophys Res Commun 137:36–42

    PubMed  CAS  Google Scholar 

  • Jensen RA, Morse DE (1984) Intraspecific facilitation of larval recruitment: gregarious settlement of the polychaete Phragmatopoma californica (Fewkes). J Exp Mar Biol Ecol 83:107–126

    Google Scholar 

  • Johnson BR, Ache BW (1978) Antennular chemosensitivity in the spiny lobster, Panulirus argus: amino acids as feeding stimuli. Mar Behav Physiol 5:145–157

    Google Scholar 

  • Johnson BR, Atema J (1983) Narrow-spectrum chemoreceptor cells in the antennules of the American lobster. Neurosci Lett 41:145–150

    PubMed  CAS  Google Scholar 

  • Johnson BR, Voigt R, Borroni PF, Atema J (1984) Response properties of lobster chemorecep-tors: tuning of primary taste neurons in walking legs. J Comp Physiol A 155:593–604

    CAS  Google Scholar 

  • Kaissling K-E (1987) Wright RH Lectures on insect olfaction. In: Colbow C (ed) Simon Fraser Univ, Burnaby, British Columbia, Can

    Google Scholar 

  • Kay R (1983) Cyclic AMP and development in the slime mould. Nature (London) 301:659

    PubMed  CAS  Google Scholar 

  • Kittredge JS, Takahashi FT, Lindsey J, Lasker R (1974) Chemical signals in the sea: marine allelochemics and evolution. Fish Bull 72:1–11

    CAS  Google Scholar 

  • Kiyohara S, Hidaka I, Tamura T (1975) Gustatory response in the puffer. II. Single fiber analyses. Bull Jpn Soc Sci Fish 41:383–391

    Google Scholar 

  • Kleene SJ (1986) Bacterial Chemotaxis and vertebrate olfaction. Experientia 42:241–250

    PubMed  CAS  Google Scholar 

  • Klein P, Theibert A, Fontana D, Devreotes PN (1985) Identification and cyclic AMP-induced modification of the cyclic AMP receptor in Dictyostelium discoideum. J Biol Chem 260:1757–1764

    PubMed  CAS  Google Scholar 

  • Konijn TM, van de Meene JGC, Bonner JT, Barkley DS (1967) The acrasin activity of adeno-sine-3′,5′-cyclic phosphate. Proc Natl Acad Sci USA 58:1152–1154

    PubMed  CAS  Google Scholar 

  • Kreutzberg GW, Barron KD, Schubert P (1978) Cytochemical localization of 5′-nucleotidase in glial plasma membranes. Brain Res 158:247–257

    PubMed  CAS  Google Scholar 

  • Kreutzberg GW, Reddington M, Lee KW, Schubert P (1983) Adenosine: transport, function and interactions with receptors in the CNS. J Neur Transmiss Suppl 18:112–119

    Google Scholar 

  • Kurjan J, Herskowitz I (1982) Structure of a yeast pheromone gene (MF): a putative α-factor precursor contains four tandem copies of mature a-factor. Cell 30:933–943

    PubMed  CAS  Google Scholar 

  • Kusano K, Miledi R, Stinnakre J (1982) Cholinergic and catecholaminergic receptors in the Xenopus oocyte membrane. J Physiol (London) 328:143–170

    CAS  Google Scholar 

  • Leick V, Hellung-Larsen P (1985) Chemosensory responses in Tetrahymena: the involvement of peptides and other signal substances. J Protozool 32:550–553

    CAS  Google Scholar 

  • Lenhoff HM (1981) Biology and physical chemistry of feeding response of hydra. In: Cagan RH, Kare MR (eds) Biochemistry of taste and olfaction. Academic Press, New York London, pp 475–497

    Google Scholar 

  • Lenhoff HM, Heagy W (1977) Aquatic invertebrates: model systems for the study of receptor activation and evolution of receptor proteins. Annu Rev Pharmacol Toxicol 17:243–258

    PubMed  CAS  Google Scholar 

  • Lentz TL (1968) Primitive nervous systems. Yale Univ Press, New Haven

    Google Scholar 

  • Levandowsky M, Cheng T, Kehr A, Kim J, Gardner L, Silvern L, Tsang L, Lai G, Chung C, Prakash E (1984) Chemosensory responses to amino acids and certain amines by the ciliate Tetrahymena: a flat capillary assay. Biol Bull 167:322–330

    CAS  Google Scholar 

  • Levitzki A (1986) β-Adrenergic receptors and their mode of coupling to adenylate cyclase. Physiol Rev 66:819–854

    PubMed  CAS  Google Scholar 

  • Lowenstein JM, Yu MK, Naito Y (1983) Regulation of adenosine metabolism by 5′-nucleoti-dases. In: Berne RM, Rall TW, Rubio R (eds) Regulatory functions of adenosine. Nijhoff, Boston, pp 117–131

    Google Scholar 

  • Ma WC (1977) Electrophysiological evidence for chemosensitivity to adenosine, adenine and sugars in Spodoptera exempta and related species. Experientia 33:356–358

    PubMed  CAS  Google Scholar 

  • Mackie AM, Adron JW (1978) Identification of inosine and inosine 5′-monophosphate as the gustatory feeding stimulants for the turbot Scophthalamus maximus. Comp Biochem Physiol 60A:79–83

    CAS  Google Scholar 

  • Mackie AM, Grant FT (1974) Interspecies and intraspecies communication by marine invertebrates. In: Grant PT, Mackie AM (eds) Chemoreception in marine organisms. Academic Press, New York London, pp 105–141

    Google Scholar 

  • Maier I, Muller DG (1986) Sexual pheromones in algae. Biol Bull 170:145–175

    CAS  Google Scholar 

  • Mato JM, Krens FA, van Haastert JM, Konijn TM (1977) 3′:5′-Cyclic AMP-dependent 3′:5′-cy-clic GMP accumulation in Dictyostelium discoideum. Proc Natl Acad Sci USA 74:2348–2351

    PubMed  CAS  Google Scholar 

  • Mato JM, Jastorff B, Morr M, Konijn TM (1978) A model for cyclic AMP-chemoreceptor interaction in Dictyostelium discoideum. Biochim Biophys Acta 544:309–314

    PubMed  CAS  Google Scholar 

  • McCarthy MP, Earnest JP, Young EF, Choe S, Stroud RM (1986) The molecular neurobiology of the acetylcholine receptor. Annu Rev Neurosci 9:383–413

    PubMed  CAS  Google Scholar 

  • McRobbie SJ (1986) Chemotaxis and cell mobility in the cellular slime molds. CRC Crit Rev Microbiol 13:335–375

    CAS  Google Scholar 

  • Mitchell BK (1976) Physiology of an ATP receptor in labellar sensilla of the tsetse fly Glossina morsitans morsitans Westw. (Diptera: Glossinidae). J Exp Biol 65:259–271

    PubMed  CAS  Google Scholar 

  • Mitchell BK (1985) Specificity of an amino acid-sensitive cell in the adult Colorado Beetle, Lep-tinotarsa decemlineata. Physiol Entomol 10:421–429

    CAS  Google Scholar 

  • Moens PB, Konijn TM (1974) Cyclic AMP as a cell surface activating agent in Dictyostelium discoideum. FEBS Lett 45:44–46

    PubMed  CAS  Google Scholar 

  • Morse ANC, Morse DE (1984) Recruitment and metamorphosis of Haliotis larvae induced by molecules uniquely available at the surfaces of crustose red algae. J Exp Mar Biol Ecol 75:191–215

    CAS  Google Scholar 

  • Morse DE (1985) Neurotransmitter-mimetic inducers of larval settlement and metamorphosis. Bull Mar Sci 37:697–706

    Google Scholar 

  • Morse DE, Hooker N, Duncan H, Jensen L (1979) γ-Aminobutyric acid, a neurotransmitter, induces planktonic abalone larvae to settle and begin metamorphosis. Science 204:407–410

    PubMed  CAS  Google Scholar 

  • Morse DE, Duncan H, Hooker N, Baloun A, Young G (1980a) GABA induces metamorphosis in planktonic molluscan larvae. Fed Proc 39:3237–3241

    PubMed  CAS  Google Scholar 

  • Morse DE, Hooker N, Duncan H (1980b) GABA induces metamorphosis in Haliotis. V: stereochemical specificity. Brain Res Bull 5:381–387

    CAS  Google Scholar 

  • Naitoh Y (1982) Protozoa. In: Shelton GAB (ed) Electrical conduction and behavior in “simple” invertebrates. Clarendon, Oxford, pp 1–48

    Google Scholar 

  • Nakamura T, Gold GH (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature (London) 325:442–444

    PubMed  CAS  Google Scholar 

  • Najundiah V, Malchow D (1976) A theoretical study of the effects of cyclic AMP phosphodiesterases during aggregation in Dictyostelium. J Cell Sci 22:49–58

    Google Scholar 

  • Oliveira MM, Antunes A, De Mello FG (1984) Growth of Trypanosoma cruzi epimastigotes controlled by shifts in cyclic AMP mediated by adrenergic ligands. Mol Biochem Parasitol 11:283–292

    PubMed  CAS  Google Scholar 

  • Olsen RW, Wong EHF, Stauber GB, King RG (1984) Biochemical pharmacology of the y-aminobutyric acid receptor/ionophore protein. Fed Proc 43:2773–2778

    PubMed  CAS  Google Scholar 

  • Olsson RA, Khouri EM, Bedznek JL Jr, McLean J (1979) Coronary vasoactivity of adenosine in the conscious dog. Circ Res 45:468–478

    PubMed  CAS  Google Scholar 

  • Ordal GW (1985) Bacterial Chemotaxis: biochemistry of behavior in a single cell. CRC Crit Rev Microbiol 12:95–130

    CAS  Google Scholar 

  • Pace U, Lancet D (1986) Olfactory GTP-binding protein: signal-transducing polypeptide of vertebrate chemosensory neurons. Proc Natl Acad Sci USA 83:4947–4951

    PubMed  CAS  Google Scholar 

  • Pace U, Hanski E, Salomon Y, Lancet D (1985) Odorant-sensitive adenylate cyclase may mediate olfactory reception. Nature (London) 316:255–258

    PubMed  CAS  Google Scholar 

  • Pawlik JR (1986) Chemical induction of larval settlement and metamorphosis in the reef-building tube-worm Phragmatopoma californica (Sabellariidae, Polychaeta). Mar Biol 91:59–68

    CAS  Google Scholar 

  • Pearson JD (1985) Ectonucleotidases. In: Paton DM (ed) Methods in pharmacology, vol 6: Methods in adenosine research. Plenum, New York, pp 83–107

    Google Scholar 

  • Pearson JD, Carleton JS, Gordon JL (1980) Metabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smooth-muscle cells in culture. Biochem J 190:421–429

    PubMed  CAS  Google Scholar 

  • Phillis JW, Wu PH (1981) The role of adenosine and its nucleotides in central synaptic transmission. Prog Neurobiol 16:187–239

    PubMed  CAS  Google Scholar 

  • Posner BI, Khan MN, Bergeron JJM (1982) Endocytosis of peptide hormones and other ligands. Endocrinol Rev 3:280–298

    CAS  Google Scholar 

  • Rifkin B, Bartoshuk LM (1980) Taste synergism between monosodium glutamate and disodium 5′-guanylate. Physiol Behav 24:1169–1172

    PubMed  CAS  Google Scholar 

  • Schaap P, Wang M (1986) Interactions between adenosine and oscillatory cAMP signaling regulate size and pattern in Dictyostelium. Cell 45:137–144

    PubMed  CAS  Google Scholar 

  • Schiffmann E (1982) Leukocyte Chemotaxis. Annu Rev Physiol 44:553–568

    PubMed  CAS  Google Scholar 

  • Schiffman SS, Gill JM, Diaz C (1985) Methyl xanthines enhance taste: evidence for modulation of taste by adenosine receptor. Pharmacol Biochem Behav 22:195–203

    PubMed  CAS  Google Scholar 

  • Shepheard P (1974) Chemoreception in the antennule of the lobster, Homarus americanus. Mar Behav Physiol 2:261–273

    CAS  Google Scholar 

  • Shirley SG, Robinson CJ, Dickinson K, Aujla R, Dodd GH (1986) Olfactory adenylate cyclase of the rat. Biochem J 240:605–607

    PubMed  CAS  Google Scholar 

  • Sklar PB, Anholt RRH, Snyder SH (1986) The odorant-sensitive adenylate cyclase of olfactory receptor cells. J Biol Chem 261:15538–15543

    PubMed  CAS  Google Scholar 

  • Smith CD, Verghese MW, Snyderman R (1987) Regulation of leukocyte responses to chemoat-tractants: guanine nucleotide regulatory (N) proteins and phospholipase C. In: Konijn TM, van Haastert PJM, van der Starre H, van der Wel H, Houslay MD (eds) Molecular mechanisms of desensitization to signal molecules. Springer, Berlin Heidelberg New York Tokyo, pp 277–289

    Google Scholar 

  • Snyderman R, Pike MC (1984) Chemoattractant receptors on phagocytic cells. Annu Rev Immunol 2:257–281

    PubMed  CAS  Google Scholar 

  • Spencer M, Case JF (1984) Exogenous ecdysteroids elicit low threshold sensory responses in spiny lobsters. J Exp Zool 229:163–166

    CAS  Google Scholar 

  • Sprague GF Jr, Blair LC, Thorner J (1983) Cell interactions and regulation of cell type in the yeast Saccharomyces cerevisiae. Annu Rev Microbiol 37:623–660

    PubMed  CAS  Google Scholar 

  • Starr RC, O’Neil RM, Miller CE III (1980) L-glutamic acid as mediator of sexual morphogenesis in Volvox capensis. Proc Natl Acad Sci USA 77:1025–1028

    PubMed  CAS  Google Scholar 

  • Sutcliffe JF, McIver SB (1979) Experiments on biting and gorging behavior in the black fly, Simulium venustum. Physiol Entomol 4:393–400

    CAS  Google Scholar 

  • Torii K, Cagan RH (1980) Biochemical studies of taste sensation. IX. Enhancement of L-[3H] glutamate binding to bovine taste papillae by 5′-ribonucleotides. Biochim Biophys Acta 627:313–323

    PubMed  CAS  Google Scholar 

  • Trapido-Rosenthal HG, Morse DE (1985) L-α, ω-diamino acids facilitate GABA induction of larval metamorphosis in a gastropod mollusc (Haliotis rufescens). J Comp Physiol B 155:403–414

    CAS  Google Scholar 

  • Trapido-Rosenthal HG, Morse DE (1986a) Regulation of receptor-mediated settlement and metamorphosis in larvae of a gastropod mollusc (Haliotis rufescens). Bull Mar Sci 39:383–392

    Google Scholar 

  • Trapido-Rosenthal HG, Morse DE (1986b) Availability of chemosensory receptors is down-regulated by habituation of larvae to a morphogenetic signal. Proc Natl Acad Sci USA 83:7658–7662

    PubMed  CAS  Google Scholar 

  • Trapido-Rosenthal HG, Carr WES, Gleeson RA (1987) Biochemistry of an olfactory purinergic system: dephosphorylation of excitatory nucleotides and uptake of adenosine. J Neurochem 49:1174–1182

    PubMed  CAS  Google Scholar 

  • van Haastert PJM (1984) Guanine nucleotides modulate cell surface cAMP-binding sites in membranes of Dictyostelium discoideum. Biochem Biophys Res Commun 124:597–604

    PubMed  Google Scholar 

  • van Haastert PJM, Kien E (1983) Binding of cAMP derivatives to Dictyostelium discoideum cells: activation mechanism of the cell surface cAMP receptor. J Biol Chem 258:9636–9642

    PubMed  Google Scholar 

  • van Haastert PJM, van Walsum H, Pasveer FJ (1982) Nonequilibrium kinetics of a cyclic GMP-binding protein in Dictyostelium discoideum. J Cell Biol 94:271–278

    PubMed  Google Scholar 

  • van Haastert PJM, DeWit RJW, Janssens PMW, Kesbeke F, DeGoede J (1986) G-protein-medi-ated interconversions of cell-surface cAMP receptors and their involvement in excitation and desensitization of guanylate cyclase in Dictyostelium discoideum. J Biol Chem 261:6904–6911

    PubMed  Google Scholar 

  • van Houten J (1979) Membrane potential changes during chemokinesis in Paramecium. Science 240:1100–1103

    Google Scholar 

  • van Houten J, Preston RR (1987) Chemoreception in single-celled organisms. In: Finger TE (ed) Neurobiology of taste and smell. John Wiley & Sons, New York, pp 11–38

    Google Scholar 

  • van Houten J, Hauser DCR, Levandowsky M (1981) Chemosensory behavior in protozoa. In: Levandowsky M, Hutner SH (eds) Biochemistry and physiology of protozoa, vol 4. Academic Press, New York London, pp 67–124

    Google Scholar 

  • Venter JC, DiPorzio U, Robinson DA, Shreeve SM, Lai J, Kerlavage AR, Fracek SP, Lentes K-U, Fraser CM (1988) Evolution of neurotransmitter receptor systems. Progr Neurobiol 30:105–169

    CAS  Google Scholar 

  • Watling KJ, Bristow DR (1986) GABAB receptor-mediated enhancement of vasoactive intestinal peptide-stimulated cyclic AMP production in slices of rat cerebral cortex. J Neurochem 46:1755–1761

    PubMed  CAS  Google Scholar 

  • Weiner N, Taylor P (1985) Drugs acting at synaptic and neuroeffector junctional sites. In: Gilman AG, Goodman LS, Rall TW, Murad F. The pharmacological basis of therapeutics. Mac-millan, New York, pp 66–99

    Google Scholar 

  • Weinstock RS, Wright HN, Spiegel AM, Levine MA, Moses AM (1986) Olfactory dysfunction in humans with deficient guanine nucleotide-binding protein. Nature (London) 322:635–636

    PubMed  CAS  Google Scholar 

  • Wurster B, Schubiger K, Wick U, Gerisch G (1977) Cyclic GMP in Dictyostelium discoideum: oscillations and pulses in response to folic acid and cyclic AMP signals. FEBS Lett 76:141–144

    PubMed  CAS  Google Scholar 

  • Yamaguchi S (1979) The umami taste. In: Boudreau JC (ed) Food taste chemistry. Am Chem Soc, Washington, DC, pp 33–51

    Google Scholar 

  • Yool AJ, Grau SM, Hadfield MG, Jensen RA, Markell DA, Morse DE (1986) Excess potassium induces larval metamorphosis in four marine invertebrate species. Biol Bull 170:255–266

    CAS  Google Scholar 

  • Zimmer-Faust RK (1987) Crustacean chemical perception: towards a theory of optimal chemoreception. Biol Bull 172:10–29

    CAS  Google Scholar 

  • Zimmer-Faust RK, Gleeson RA, Carr WES (1988) The behavioral response of spiny lobsters to ATP: evidence for mediation by P2-like chemosensory receptors. Biol Bull 175:167–174

    CAS  Google Scholar 

  • Zuckerman BM, Jansson HB (1984) Nematode Chemotaxis and possible mechanisms of host/prey recognition. Annu Rev Phytopathol 22:95–113

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carr, W.E.S., Gleeson, R.A., Trapido-Rosenthal, H.G. (1989). Chemosensory Systems in Lower Organisms: Correlations with Internal Receptor Systems for Neurotransmitters and Hormones. In: Advances in Comparative and Environmental Physiology. Advances in Comparative and Environmental Physiology, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74510-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74510-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74512-6

  • Online ISBN: 978-3-642-74510-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics