Skip to main content

Neuronal Control of Osmoregulatory Responses in Gastropods

  • Chapter
Advances in Comparative and Environmental Physiology

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 5))

Abstract

Combining the experimental approaches of environmental physiology and cellular neurobiology can be particularly useful when studying the control of the physiological changes and behavioral modifications that occur in response to environmental stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adolph EF (1933) Exchanges of water in the frog. Biol Rev 8:224–240

    Google Scholar 

  • Bablanian GM, Treistman SN (1983) Seawater osmolarity influences bursting pacemaker activity in intact Aplysia californica. Brain Res 271:342–345

    PubMed  CAS  Google Scholar 

  • Bablanian GM, Treistman SN (1985) The effect of hyperpolarization of cell R15 on the nemo-lymph composition of intact Aplysia. J Comp Physiol 155:297–303

    CAS  Google Scholar 

  • Benson JA, Treherne JE (1978a) Axonal adaptation to osmotic and ionic stress in an invertebrate osmoconformer (Mercierella enigmatica Fauvel). II. Effects of ionic dilution on the resting and action potentials. J Exp Biol 76:205–219

    PubMed  CAS  Google Scholar 

  • Benson JA, Treherne JE (1978b) Axonal adaptation to osmotic and ionic stress in an invertebrate osmoconformer (Mercierella eniqmatica Fauvel) III. Adaptations to hypoosmotic dilution J Exp Biol 76:221–235

    CAS  Google Scholar 

  • Bentley PJ (1971) Endocrines and osmoregulation. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Beres LS, Pierce SK (1981) The effects of salinity stress on the electrophysiological properties of Mya arenaria neurons. J Comp Physiol 144:165–173

    Google Scholar 

  • Brown D, Grosso A, DeSousa RC (1980) Isoproterenol-induced intramembrane particle aggregation and water flux in toad epidermis. Biochem Biophys Acta 596:158–164

    PubMed  CAS  Google Scholar 

  • Brunn F (1921) Beitrag zur Kenntnis der Wirkung von Hypophysenextrakt auf den Wasserhaushalt des Frosches. Z Ges Exp Med 25:170–175

    CAS  Google Scholar 

  • Burton RF (1964) Variations in the volume and concentration of the blood of the snail, Helix pomatia L., in relation to the water content of the body. Can J Zool 42:1085–1097

    CAS  Google Scholar 

  • Burton RF (1965a) Sodium, potassium and magnesium in the snail, Helix pomatia L. Physiol Zool 38:335–342

    CAS  Google Scholar 

  • Burton RF (1965b) Variations in the water and mineral contents of some organs of the snail, Helix pomatia L. Can J Zool 43:771–779

    PubMed  CAS  Google Scholar 

  • Burton RF (1965c) Relationships between the cation contents of slime and blood in the snail, Helix pomatia L. Comp Biochem Physiol 15:339–345

    PubMed  CAS  Google Scholar 

  • Burton RF (1966) Aspects of ionic regulation in certain terrestrial pulmonata. Comp Biochem Physiol 17:1007–1018

    PubMed  CAS  Google Scholar 

  • Burton RF (1968a) Ionic regulation in the snail, Helix aspersa. Comp Biochem Physiol 25:501–508

    PubMed  CAS  Google Scholar 

  • Burton RF (1968b) Ionic balance in the blood of pulmonata. Comp Biochem Physiol 25:509–516

    PubMed  CAS  Google Scholar 

  • Burton RF (1971a) Natural variations in cation levels in the blood of three species of land snail (Pulmonata: Helicidae). Comp Biochem Physiol A 39:267–275

    CAS  Google Scholar 

  • Burton RF (1971b) Concentrations of cations in the blood of some terrestrial snails. Comp Biochem Physiol A 39:875–878

    CAS  Google Scholar 

  • Burton RF (1983) Ionic regulation and water balance. In: Saleuddin ASM, Wilbur KM (eds) The mollusca, vol 5: Physiology, pt 2. Academic Press, New York London, pp 292–352

    Google Scholar 

  • Camhi JM (1983) Neuroethology. Sinauer, Sunderland, MA

    Google Scholar 

  • Carlson AD, Treherne JE (1969) The ionic basis of the fast action potentials in the isolated cerebro-visceral connective of Anodonta cygnea. J Exp Biol 51:297–318

    PubMed  CAS  Google Scholar 

  • Carlson AD, Treherne JE (1977) Ionic basis of axonal excitability in an extreme euryhaline osmoconformer, the serpulid worm, Mercierella enigmatica (Fauvel). J Exp Biol 67:205–215

    PubMed  CAS  Google Scholar 

  • Dainton BH (1954a) The activity of slugs. I. The induction of activity by changing temperatures. J Exp Biol 31:165–187

    Google Scholar 

  • Dainton BH (1954b) The activity of slugs. II. The effect of light and air currents. J Exp Biol 31:188–197

    Google Scholar 

  • DeSousa RC, Grosso A (1982) Osmotic water flow across the abdominal skin of the toad Bufo marinus: effect of vasopressin and isoprenaline. J Physiol 329:281–296

    CAS  Google Scholar 

  • De With ND (1977) Evidence for the independent regulation of specific ions in the haemolymph of Lymnaea stagnalis (L). Proc Konigl Nederl Akad Wetensch Ser C80:144–157

    Google Scholar 

  • De With ND (1978) The effects of starvation and feeding on the haemolymph in the freshwater snail Lymnaea stagnalis. Proc Konigl Nederl Akad Wetensch Ser C81:241–248

    Google Scholar 

  • De With ND (1980) Water turn-over, ultrafiltration, renal water reabsorption and renal circulation in fed and starved specimens of Lymnaea stagnalis adapted to different external osmo-larities. Proc Konigl Nederl Akad Wetensch Ser C 83:109–120

    Google Scholar 

  • Deyrup-Olsen I, Martin AW (1982) Surface exudation in terrestrial slugs. Comp Biochem Physiol 72c:45–51

    CAS  Google Scholar 

  • DiBona DR (1983) Cytoplasmic involvement in ADH-mediated osmosis across toad urinary bladder. Am J Physiol 245 (Cell Physiol 14):C297–C307

    PubMed  CAS  Google Scholar 

  • Fromter E, Diamond J (1972) Route of passive ion permeation in epithelia. Nature (London) 235:9–13

    CAS  Google Scholar 

  • Furgal SM, Brownell PH (1987) Ganglionic circulation and its effects on neurons controlling cardiovascular functions in Aplysia californica. J Exp Zool 244:347–364

    PubMed  CAS  Google Scholar 

  • Gelperin A, Chang JJ, Reingold SC (1978) Feeding motor program in Limax. I. Neuromuscular correlates and control by chemosensory input. J Neurobiol 9:285–300

    PubMed  CAS  Google Scholar 

  • Geraerts WPM, De With ND, Roubos EW, Joosse J (1981) “Endocrine aspects of hydromineral regulation in molluscs”. In: Farner S, Lederis K (eds) Neurosecretion, molecules, cells, systems. Plenum, New York, pp 337–347

    Google Scholar 

  • Gilles R (ed) (1979) Intracellular organic osmotic effectors. In: Mechanisms of osmoregulation in animals (Maintenance of cell volume). John Wiley & sons, New York, pp 111–154

    Google Scholar 

  • Greenaway P (1970) Sodium regulation in the freshwater mollusc Limnaea stagnalis (L.) (Gastropoda: Pulmonata). J Exp Biol 53:147–163

    PubMed  CAS  Google Scholar 

  • Grega DS, Prior DJ (1985) The effects of feeding on heart activity in the terrestrial slug, Limax maximus: central and peripheral control. J Comp Physiol A 156:539–545

    Google Scholar 

  • Grega DS, Prior DJ (1986) Modification of cardiac activity in response to dehydration in the terrestrial slug, Limax maximus. J Exp Zool 2371:85–190

    Google Scholar 

  • Grimm-Jørgensen Y (1978) Immunoreactive thyrotopin releasing factor in a gastropod: distribution in the central nervous system and hemolymph of Lymnaea stagnalis. Gen Comp Endocrinol 35:387–390

    PubMed  Google Scholar 

  • Grimm-Jørgensen Y (1979) Effect of thyrotropin releasing factor on body weight of the pond snail Lymnaea stagnalis. J Exp Zool 208:169–175

    PubMed  Google Scholar 

  • Grimm-Jørgensen Y (1980) Effect of thyrotropin-releasing hormone and 22Na uptake by the pond snail, Helisoma carabaceum. J Exp Zool 212:471–473

    PubMed  Google Scholar 

  • Grimm-Jørgensen Y (1983) Possible Physiological Roles of Thyrotropin Releasing Hormone and a Seomatostatin-like Peptide in Gastropods. In: Lever J, Boer HH (eds) Molluscan Neuroendocrinology. Mon Royal Neth Acad Arts and Sci. North Holland Publishing Co. Amsterdam, Oxford, New York, pp 21–27

    Google Scholar 

  • Grimm-Jørgensen Y, Connolly SM, Visser TJ (1984) Effect of thyrotropin-releasing hormone and its metabolites on the secretion of sulfated polysaccharides by foot integument of a pond snail. Gen Comp Endocrinol 55:410–417

    PubMed  Google Scholar 

  • Harrison FM, Martin AW (1965) Excretion in the cephalopod, Octopus dofleini. J Exp Biol 42:71–98

    PubMed  CAS  Google Scholar 

  • Hasegawa K, Takeda N (1986) Responses of giant neurons to osmotic stress in the giant african snail Achatina fulica. Comp Biochem Physiol 84A (2)289–294

    Google Scholar 

  • Hays RM (1983) Alteration of luminal membrane structure by antidiuretic hormone. Am J Physiol 245 (Cell Physiol 14):C289–C296

    PubMed  CAS  Google Scholar 

  • Heller H (1941) Differentiation of an (amphibian) water balanace principle from the antidiuretic principle of the posterior pituitary gland. J Physiol 100:125–141

    PubMed  CAS  Google Scholar 

  • Hughes GM, Kerkut GA (1956) Electrical activity in a slug ganglion in relation to the concentration of Locke solution. J Exp Biol 33:282–294

    CAS  Google Scholar 

  • Jones PG, Rosser SJ, Bulloch AGM (1988) Glutamate suppression of feeding and the underlying output of effector neurons in Helisoma. (in press)

    Google Scholar 

  • Kandel ER (1976) Cellular basis of behavior. Freeman, San Francisco

    Google Scholar 

  • Kerkut GA, Taylor BJR (1956) The sensitivity of the pedal ganglion of the slug to osmotic pressure changes. J Exp Biol 33:493–501

    CAS  Google Scholar 

  • Khan HR, Saleuddin ASM (1979a) Effects of osmotic changes and neurosecretory extracts on kidney ultrastructure in the freshwater pulmonate Helisoma. Can J Zool 57:1256–1270

    Google Scholar 

  • Khan HR, Saleuddin ASM (1979b) Osmotic regulation and osmotically induced changes in the neurosecretory cells of the pulmonate snaul Helisoma. Can J Zool 57:1371–1383

    Google Scholar 

  • Khan HR, Saleuddin ASM (1981) Cell contacts in the kidney epithelium of Helisoma (Mollusca: gastropoda) — effects of osmotic pressure and brain extracts: a freeze-fracture study. J Ultrastruct Res 75:23–40

    PubMed  CAS  Google Scholar 

  • Koch VT, Koester J, Weiss KR (1984) Neuronal mediation of cardiovascular effects of food arousal in Aplysia. J Neurophysiol 51:126–135

    PubMed  CAS  Google Scholar 

  • Koester J, Mayeri E, Liebeswar G, Kandel ER (1973) Cellular regulation of homeostasis: neuronal control of circulation in Aplysia. Fed Proc 32:2179–2187

    PubMed  CAS  Google Scholar 

  • Koester J, Mayeri E, Liebeswar G, Kandel ER (1974) Neural control of circulation in Aplysia. II. Interneurons. J Neurophysiol 37:476–496

    PubMed  CAS  Google Scholar 

  • Koester J, Dieringer N, Mandelbaum DE (1979) Cellular neuronal control of molluscan heart. Am Zool 19:103–116

    CAS  Google Scholar 

  • Kupfermann I, Weiss KR (1976) Water regulation by a presumptive hormone contained in identified neurosecretory cell R15 of Aplysia. J Gen Physiol 67:113–123

    PubMed  CAS  Google Scholar 

  • Lever J, Joosse J (1961) On the influence of the salt content of the medium on some special neurosecretory cells in the lateral lobes of the cerebral ganglia of Lymnaea stagnalis. Konigl Nederl Akad Wetensch Ser C64:631–639

    Google Scholar 

  • Lewis S (1983) Control of Na+ and water absorption across vertebrate ‘tight’ epithelia by ADH and aldosterone. J Exp Biol 106:9–24

    PubMed  CAS  Google Scholar 

  • Lloyd PE, Willows AOD (1988) Identified multiple transmitter neurons in Tritonia. II. Control of gut motility. J Neurobiol (in press)

    Google Scholar 

  • Lloyd PE, Masinovsky BP, Willows AOD (1988) Multiple transmitter neurons in Tritonia: I. Biochemical studies. J Neurobiol (in press)

    Google Scholar 

  • Machin J (1964a) The evaporation of water from Helix aspersa I. The nature of the evaporating surface. J Exp Biol 41:759–769

    PubMed  CAS  Google Scholar 

  • Machin J (1964b) The evaporation of water from Helix aspersa. II. Measurement of air flow and the diffusion of water vapour. J Exp Biol 41:771–781

    PubMed  CAS  Google Scholar 

  • Machin J (1964c) The evaporation of water from Helix aspersa. III. The application of evaporation formulae. J Exp Biol 41:783–792

    PubMed  CAS  Google Scholar 

  • Machin J (1966) The evaporation of water from Helix aspersa. IV. Loss from the mantle of the inactive snail. J Exp Biol 45:269–278

    PubMed  CAS  Google Scholar 

  • Machin J (1975) spivn In: Fretter V, Peake J (eds) “Water relationships”; in Pulmonates, vol 1. Academic Press, New York London, pp 105–163

    Google Scholar 

  • Makra ME, Prior DJ (1985) Angiotensin II can initiate contact-rehydration in terrestrial slugs. J Exp Biol 119:385–388

    CAS  Google Scholar 

  • Mayeri E, Koester J, Kupfermann I, Liebeswar G, Kandel ER (1974) Neural control of circulation in Aplysia. I. Motoneurons. J Neurophysiol 37:458–475

    PubMed  CAS  Google Scholar 

  • Moore GJ, Thornhill JA, Gill V, Lederis K, Lukowiak K (1981) An arginine vasotocin-like neuropeptide is present in the nervous system of the marine mollusc Aplysia californica. Brain Res 206:213–218

    PubMed  CAS  Google Scholar 

  • Newell PF, Skelding JM (1973) Structure and permeability of the septate junction in the kidney sac of Helix pomatia L. Z Zeilforsch 147:31–39

    CAS  Google Scholar 

  • Parker HT, Pierce SK (1985) Comparative electrical properties of identified neurons in Elysia chlorotica before and after low salinity acclimation. Comp Biochem Physiol 82A:367–372

    Google Scholar 

  • Phifer CB (1983) Dehydration-induced and osmotically-mediated modification of feeding behavior and its neural correlate in the slug Limax maximus. Ph D Diss, Univ Kentucky

    Google Scholar 

  • Phifer CB, Prior DJ (1985) Body hydration and haemolymph osmolality affect feeding and its neural correlate in the terrestrial gastropod, Limax maximus. J Exp Biol 118:405–421

    PubMed  CAS  Google Scholar 

  • Phillips J, Lewis S (1983) Epithelia and cellular mechanisms in osmoregulation. J Exp Biol 106 (Rev vol)

    Google Scholar 

  • Pickering BT, Heller H (1959) Chromatographic and biological characteristics of fish and frog neurohypophysial extracts. Nature (London) 184:1463–1464

    CAS  Google Scholar 

  • Prior DJ (1981) Hydration-related behaviour and the effects of osmotic stress of motor function in the slugs. Limax maximus and Limax pseudoflavus. In: Salanki J (ed) Advances in physiological sciences, vol 23: Neurobiology of invertebrates. Pergamon, Oxford, pp 131–145

    Google Scholar 

  • Prior DJ (1982) Osmotic control of drinking behavior in terrestrial slugs. Am Zool 22 (4):978

    Google Scholar 

  • Prior DJ (1983) Hydration-induced modulation of feeding responsiveness in terrestrial slugs. J Exp Zool 227:15–22

    Google Scholar 

  • Prior DJ (1984) Analysis of contact-rehydration in terrestrial gastropods: osmotic control of drinking behaviour. J Exp Biol 111:63–73

    PubMed  CAS  Google Scholar 

  • Prior DJ (1985) Water-regulatory behaviour in terrestrial gastropods. Biol Rev 60:403–424

    PubMed  CAS  Google Scholar 

  • Prior DJ (1988) Central actions of SCPB in the gastropod mollusc, Limax maximus. Am Zool (in press)

    Google Scholar 

  • Prior DJ, Delaney K (1986) Activation of buccal neuron Bl in the edible slug, Limax maximus, mimics the actions of exogenous SCPB. Am Zool 26:126A

    Google Scholar 

  • Prior DJ, Gelperin A (1977) Autoactive molluscan neuron: reflex function and synaptic modulation during feeding in the terrestrial slug, Limax maximus. J Comp Physiol 114:217–232

    Google Scholar 

  • Prior DJ, Pierce SK (1981) Adaption and tolerance of invertebrate nervous system to osmotic stress. J Exp Zool 215:237–245

    CAS  Google Scholar 

  • Prior DJ, Uglem GL (1984) Analysis of contact-rehydration on terrestrial gastropods. Absorption of 14C-inulin through the epithelium of the foot. J Exp Biol 11:75–80

    Google Scholar 

  • Prior DJ, Watson WH (1988) The molluscan neuropeptide, SCPB, increases the responsiveness of the feeding motor program of Limax maximus. J Neurobiol 19 (1):87–105

    PubMed  CAS  Google Scholar 

  • Prior DJ, Hume M, Varga D, Hess SD (1983) Physiological and behavioural aspects of water balance and respiratory function in the terrestrial slug, Limax maximus. J Exp Biol 104:111–127

    Google Scholar 

  • Prosser CL (1973) Comparative animal physiology. Saunders, Philadelphia

    Google Scholar 

  • Quinn RH, Pierce SK (1987) The relationship of solute efflux to hyposmotic depolarization in neurons from Elysia chlorotica. Am Zool 27 (4):131 A

    Google Scholar 

  • Riddle WA (1983) Physiological ecology of land snails and slugs. In: Russell-Hunter WD (ed) The mollusca, vol 6. Ecology, pp 431–461 Academic Press, New York

    Google Scholar 

  • Rittenhouse AR, Price CH (1986) Electrophysiological and anatomical identification of the peripheral axons and target tissues of Aplysia neurons R3–14 and their status as multifunctional, multimessenger neurons. J Neurosci 6:2071–2084

    PubMed  CAS  Google Scholar 

  • Robertson JD (1964) Osmotic and ionic regulation. In: Wilbur KM, Yonge CM (eds) Physiology of mollusca, vol 1, pp 283–311. Academic Press, New York

    Google Scholar 

  • S.-Rozsa K (1979) Heart regulatory neural network in the central nervous system of Achatina fulica Ferussac (Gastropoda, Pulmonata). Comp Biochem Physiol 63A:435–445

    Google Scholar 

  • S.-Rozsa K, Salanki J, Vero M, Koeacevic N, Konjevic D (1980) Neural network regulating heart activity in Aplysia depilans and its comparison with other gastropod species. Comp Biochem Physiol 65A (1):61–68

    Google Scholar 

  • Salanki J, S.-Rozsa K (1973) Single neuron responses to tactile stimulation of the heart in the snail Helix pomatia L. J Comp Physiol 84:267–279

    Google Scholar 

  • Saleuddin ASM, Farrell CL, Gomot L, Khan HR (1983) Relative humidity affects the intercellular spaces and cell contacts of the kidney epithelium of the terrestrial snail, Helix aspersa Muller. J Morphol 178:313–322

    Google Scholar 

  • Sawada M, Blankenship JE, McAdoo DJ (1981a) Neural control of a molluscan blood vessel, anterior aorta of Aplysia. J Neurophysiol 46:967–985

    PubMed  CAS  Google Scholar 

  • Sawada M, McAdoo DJ, Blankenship JE, Price CH (1981b) Modulation of arterial muscle contraction in Aplysia by glycine and neuron R14. Brain Res 207:486–490

    PubMed  CAS  Google Scholar 

  • Sawyer WH (1951) Effect of posterior pituitary extract on permeability of frog skin to water. Am J Physiol 164:44–48

    PubMed  CAS  Google Scholar 

  • Sawyer W, Deyrup-Olsen I, Martin AW (1984) Immunological and biological characteristics of the vasotocin-like activity in the head ganglia of gastropod molluscs. Gen Comp Endocrinol 54:97–108

    PubMed  CAS  Google Scholar 

  • Schlichter LC (1981) Ion relations of haemolymph, paliai fluid, and mucus of Lymnaea stagnalis. Can J Zool 59:605–613

    CAS  Google Scholar 

  • Skelding JM (1973a) Studies on the renal physiology of Achatina achatina (L.). Malacologia 14:93–96

    PubMed  CAS  Google Scholar 

  • Skelding JM (1973b) The fine structure of the kidney of Achatina achatina (L.). Z Zellforsch 147:1–29

    PubMed  CAS  Google Scholar 

  • Soffe SR, Slade CT, Benjamin PR (1979) Environmental osmolarity and neurosecretory neurons in Lymnaea stagnalis (L.). Malacologia 18:583–586

    PubMed  CAS  Google Scholar 

  • Stinnakre J, Tauc L (1966) Effects de l’activation osmotique de l’osphradium sur les neurones du système nerveux central de l’Aplysie. J Physiol (Paris) 58:266–267

    Google Scholar 

  • Swindale NV, Benjamin PR (1976) The anatomy of neurosecory neurons in the pond snail Lymnaea stagnalis L. Philos Trans R Soc London Ser B 274:169–202

    CAS  Google Scholar 

  • Taylor A, Palmer LG (1982) Hormonal regulation of sodium chloride and water transport in epithelia. In: Goldberger RF, Yamamoto KR (eds) Biological regulation and development, vol 3A. Plenum, New York, pp 253–298

    Google Scholar 

  • Treherne JE (1980) Neuronal adaptations to ionic and osmotic stress. Comp Biochem Physiol 67B:455–463

    Google Scholar 

  • Treherne J, Pichon Y (1978) Long-term adaptation of Sabella giant axons to hyposmotic stress. J Exp Biol 75:252–263

    Google Scholar 

  • Uglem GL, Prior DJ, Hess SD (1985) Analysis of contact-rehydration in terrestrial gastropods: estimation of the pore size and molecular sieving of the integumental paracellular pathway. J Comp Physiol 156:285–289

    CAS  Google Scholar 

  • Van Weel PB (1957) Observations on the osmoregulation in Aplysia juliana Pease (Aplysiidae, Mollusca). Z Vergl Physiol 39:492–506

    Google Scholar 

  • Wells GP (1944) The water relations of snails and slugs. III. Factors determining activity in Helix pomatia L. J Exp Biol 20:79–87

    Google Scholar 

  • Welsford IG, Prior DJ (1987) The effect of SCPB application and buccal neuron, B1, stimulation on heart activity in the slug, Limax maximus. Am Zool 27 (4):138A

    Google Scholar 

  • Wendelaar Bonga SE (1970a) Investigations on neurosecretion in the central and peripheral nervous system of the pulmonate snail Lymnaea stagnalis. In: Bargmann W, Scharrer B (eds) Aspects of neuroendocrinology. Springer, Berlin Heidelberg New York, pp 43–46

    Google Scholar 

  • Wendelaar Bonga SE (1970b) Ultrastructure and histochemistry of neurosecretory cells and neurohaemal areas in the pond snail Lymnaea stagnalis. Z Zellforsch 108:190–224

    PubMed  CAS  Google Scholar 

  • Wendelaar Bonga SE (1971) OsmoticaUy induced changes in the activity of neurosecretory cells located in the pleural ganglia of the freshwater snail Lymnaea stagnalis (L.). Studied by quantitative electron microscopy. Neth J Zool 21:127–158

    CAS  Google Scholar 

  • Wendelaar Bonga SE (1972) Neuroendocrine involvement in osmoregulation in a freshwater mollusc, Lymnaea stagnalis. Gen Comp Endocrinol [Suppl] 3:308–316

    Google Scholar 

  • Willmer PG (1978a) Volume regulation and solute balance in the nervous tissue of an osmocon-forming bivalve (Mytilus edulis). J Exp Biol 77:157–179

    CAS  Google Scholar 

  • Willmer PG (1978b) Electrophysiological correlates of ionic and osmotic stress in an osmocon-forming bivalve (Mytilus edulis). J Exp Biol 77:181–205

    CAS  Google Scholar 

  • Willmer PG (1978c) Sodium fluxes and exchange pumps: further correlates of osmotic conformity in the nerves of an estuarine bivalve (Mytilus edulis). J Exp Biol 77:207–223

    CAS  Google Scholar 

  • Willows AOD, Lloyd PE, Masinovsky BP (1988) Multiple transmitter neurons in Tritonia. III. Modulation of a central pattern generator controlling feeding. J Neurobiol (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prior, D.J. (1989). Neuronal Control of Osmoregulatory Responses in Gastropods. In: Advances in Comparative and Environmental Physiology. Advances in Comparative and Environmental Physiology, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74510-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74510-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74512-6

  • Online ISBN: 978-3-642-74510-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics