Chemical Reaction Controlled Release

  • Liang-tseng Fan
  • Satish Kumar Singh
Part of the Polymers book series (POLYMERS, volume 13)

Abstract

The polymer utilized in diffusion-controlled release devices or systems plays a relatively passive role. It serves simply as a carrier and retards the rate at which the active agent is delivered to the target. Nevertheless, some polymeric carriers are designed to play a more active role in the release process. These polymers undergo chemical reactions at the target site, thereby enabling the active agent to be delivered. Such chemically activated systems fall into two broad categories (Langer, 1980; Baker, 1987):
  1. i.

    Physical immobilization systems, also called erodible or (bio)degradable systems in each of which the active agent, physically immobilized within the polymer network, is released by erosion of this network (Fig. 3.1a)

     
  2. ii.

    Chemical immobilization systems, in each of which the active agent is either chemically bonded to the polymer carrier backbone (pendant chain) or is part of the backbone itself (polyagents). Release occurs by hydrolytic or enzymatic degradation of the appropriate bonds (Fig. 3.1b).

     

Keywords

Hydrolysis Hydrocortisone Immobilization Progesterone Vinyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, G. G., Beer, J. W., Cousin, M. J., Mikels, R. A.: The Biodegradative Controlled Release of Pesticides from Polymeric Substrates, pp. 7–62. In: Controlled Release Technologies: Methods, Theory, and Applications, Vol. II, A. F. Kydonieus (Ed.), CRC Press, Boca Raton, Florida (1980)Google Scholar
  2. Baker, R. W.: Controlled Release of Biologically Active Agents, pp. 84–131, John Wiley and Sons, New York (1987)Google Scholar
  3. Baker, R. W., Lonsdale, H. K.: Erodible Controlled Release Systems. In: Preprints of papers presented at the 171st meeting, ACS, Division of Organic Coatings and Plastics Chemistry 36 (1), 235–242 (1976)Google Scholar
  4. Batz, H.-G.: Polymeric Drugs, Adv. in Pol. Sci. 23, 25–53 (1977)Google Scholar
  5. Cooney, D. O.: Effect of Geometry on the Dissolution of Pharmaceutical Tablets and Other Solids: Surface Detachment Kinetics Controlling, AIChE J. 18, 446–449 (1972)CrossRefGoogle Scholar
  6. Duncan, R., Cable, H. C., Lloyd, J. B., Rejmanova, P., Kopecek, J.: Polymers Containing Enzymatically Degradable Bonds, 7. Design of Oligopeptide Side-Chains in Poly [n-(2-hydroxypropyl)methacrylamide] Copolymers to Promote Efficient Degradation by Lysosomal Enzymes, Makromol. Chem. 184, 1997–2008 (1983)CrossRefGoogle Scholar
  7. Duncan, R., Kopecek, J.: Soluble Synthetic Polymers as Potential Drug Carriers, Adv. in Pol. Sc. 57, 51–101 (1984)Google Scholar
  8. Franzmann, G., Ringsdorf, H.: Pharmakologisch Aktive Polymere, 12. Depotformen von Chlorambucil durch Kovalente Bindung an Polymere, Makromol. Chem. 177, 2547–2552 (1977)CrossRefGoogle Scholar
  9. Harris, F. W.: Polymers Containing Pendent Pesticide Substituents, pp. 63–82. In: Controlled Release Technologies: Methods, Theory, and Applications, Vol. II, A. F. Kydonieus (Ed.), CRC Press, Boca Raton, Florida (1980)Google Scholar
  10. Harris, F. W., Aulabaugh, A. E., Case, R. D., Dykes, M. K., Feld, W. A.: Polymers Containing Pendent Herbicide Substituents: Preliminary Hydrolysis Studies. In: Controlled Release Polymeric Formulations, D. R. Paul and F. W. Harris (Eds.), ACS Symposium Series 33, 222–230(1976)CrossRefGoogle Scholar
  11. Harris, F. W., Dykes, M. R., Baker, J. A., Aulabaugh, A. E.: Polymers Containing Pendant Herbicide Substitutes: Hydrolysis Studies II. In: Controlled Release Pesticides, H. B. Scher (Ed.), ACS Symposium Series 53, 102–111 (1977)CrossRefGoogle Scholar
  12. Heller, J.: Controlled Release of Biologically Active Compounds from Bioerodible Polymers, Biomaterials 1, 51–57 (1980)CrossRefGoogle Scholar
  13. Heller, J., Baker, R. W., Gale, R. M., Rodin, J. O.: Controlled Drug Release by Polymer Dissolution. I. Partial Esters of Maleic Anhydride Copolymers — Properties and Theory, J. Appl. Polym. Sci. 22, 1991–2009 (1978)CrossRefGoogle Scholar
  14. Heller, J., Baker, R. W.: Theory and Practice of Controlled Drug Delivery from Bioerodible Polymers, pp. 1–17. In: Controlled Release of Bioactive Materials, R. W. Baker (Ed.), Academic Press, New York (1980)Google Scholar
  15. Heller, J., Trescony, P. V.: Controlled Drug Release by Polymer Dissolution. II: Enzyme-Mediated Delivery Device, J. Pharm. Sci. 68, 919–921 (1979)CrossRefGoogle Scholar
  16. Hoffman, V., Ringsdorf, H., Seganova, A.: Pharmakologisch-Aktiv Polymere, 19. Polymere mit Kovalent Gebundenem Streptomycinsulfat, Makromol. Chem. 180, 837–841 (1979)CrossRefGoogle Scholar
  17. Hopfenberg, H. B.: Controlled Release from Erodible Slabs, Cylinders, and Spheres. In: Preprints of papers presented at the 171st meeting, ACS, Division of Organic Coatings and Plastics Chemistry 36 (1) 229–234 (1976)Google Scholar
  18. Kopecek, J.: Controlled Biodegradability of Polymers — A Key to Drug Delivery Systems, Biomaterials 5, 19–25 (1984)CrossRefGoogle Scholar
  19. Langer, R.: Polymeric Delivery Systems for Controlled Drug Release, Chem. Eng. Commun. 6, 1–48 (1980)CrossRefGoogle Scholar
  20. Langer, R., Peppas, N.: Chemical and Physical Structure of Polymers as Carriers for Controlled Release of Bioactive Agents: A Review:, J. Macromol. Sci. — Rev. Macromol. Chem. Phys. C23, 61–126 (1983)Google Scholar
  21. Lee, P. I.: Diffusional Release of a Solute from a Polymeric Matrix — Approximate Analytical Solutions, J. Membrane Sci. 7, 255–275 (1980)CrossRefGoogle Scholar
  22. Lee, P. I.: Controlled Drug Release from Polymeric Matrices Involving Moving Boundaries, pp. 39–48. In: Controlled Release of Pesticides and Pharmaceuticals, D. H. Lewis (Ed.), Plenum Publishing Corp., New York (1981)Google Scholar
  23. McCormick, C. L., Fooladi, M.: Synthesis, Characterization, and Release Mechanisms of Polymers Containing Pendant Herbicides. In: Controlled Release Pesticides, H. B. Scher (Ed.), ACS Symposium Series 53, 112–125 (1977)CrossRefGoogle Scholar
  24. Neogi, A. N., Allan, G. G.: Controlled-Release Pesticides: Concepts and Realization, pp. 195–224. In: Controlled Release of Biologically Active Agents, A. C. Tanquary and R. E. Lacey (Eds.), Plenum Press, New York (1974)Google Scholar
  25. Petersen, R. V., Andersen, C. G., Fang, S.-M., Gregonis, D. E., Kim, S. W., Feijen, J., Anderson, J. M., Mitra, S.: Controlled Release of Progestins from Poly (α-Amino Acid) Carriers, pp. 45–60. In: Controlled Release of Bioactive Materials, R. Baker (Ed.), Academic Press, New York (1980)Google Scholar
  26. Pitt, C. G., Schindler, A.: The Design of Controlled Drug Delivery Systems Based on Biodegradable Polymers, pp. 17–30. In: Biodegradables and Delivery Systems for Contraception, E. S. I. Hafez and W. A. A. van Os (Eds.), MTP Press, Lancaster, England (1980)Google Scholar
  27. Pitt, C. G., Schindler, A.: Biodegradation of Polymers, pp. 53–80. In: Controlled Drug Delivery, Vol. I, Basic Concepts, S. D. Bruck (Ed.), CRC Press, Boca Raton, Florida (1983)Google Scholar
  28. Pittman, Jr., C. U., Lawyer, K. R., Ramachandran, K. S.: Polymer-Bound Fungicides for Paints. In: Biological Activities of Polymers, C. E. Carraher, Jr. and C. G. Gebelein (Eds.), ACS Symposium Series 186, 35–53 (1982)CrossRefGoogle Scholar
  29. Rejmanova, P., Kopecek, J., Pohl, J., Baudys, M., Kostka, V.: Polymers Containing Enzymatically Degradable Bonds. 8. Degradation of Oligopeptide Sequences in N-(2-hydroxypropyl)methacrylamide Copolymers by Bovine Spleen Cathepsin B, Makromol. Chem. 184, 2009–2020 (1983)CrossRefGoogle Scholar
  30. Ringsdorf, H.: Structure and Properties of Pharmacologically Active Polymers, J. Polym. Sci. Polym. Symp. 51, 135–153 (1975)CrossRefGoogle Scholar
  31. Ringsdorf, H.: Synthetic Polymeric Drugs, pp. 197–223. In: Polymeric Delivery Systems, R. J. Kostelnik (Ed.), Gordon and Breach Science Publishers, New York (1978)Google Scholar
  32. Schindler, A., Jeffcoat, R., Kimmel, G. L., Pitt, C. A., Wall, M. E., Zweidinger, R.: Biodegradable Polymers for Sustained Drug Delivery, pp. 251–286. In: Contemporary Topics in Polymer Science, Vol. 2, E. M. Pearce and J. R. Schaefgen (Eds.), Plenum Press, New York (1977)Google Scholar
  33. Thombre, A. G.: Mechanism and Kinetics of Release from Two Controlled Drug Delivery Devices, pp. 9–106, PhD Dissertation, University of Kansas, Lawrence, Kansas (1985)Google Scholar
  34. Thombre, A. G., Himmelstein, K. J.: Modelling of Drug Release Kinetics from a Laminated Device having an Erodible Drug Reservoir, Biomaterials 5, 250–254 (1984)CrossRefGoogle Scholar
  35. Tojo, K., Miyanami, K., Fan, L. T.: Mathematical Simulation of Membrane-Moderated Controlled Release, Powder Technology 35, 89–96 (1983)CrossRefGoogle Scholar
  36. Torchilin, V. P., Tischenko, E. G., Smirnov, V. N., Chazov, E. L: Immobilization of Enzymes on Slowlv Soluble Carriers, J. Biomed. Mater. Res. 11, 223–235 (1977)CrossRefGoogle Scholar
  37. Wise, D. L., Schwope, A. D., Harrigan, S. E., McCarthy, D. A., Howes, J. F.: Sustained Delivery of a Narcotic Antagonist from Lactic/Glycolic Acid Copolymer Implants, pp. 75–86. In: Polymeric Delivery Systems, R. J. Kostelnik (Ed.), Gordon and Breach Science Publishers, New York (1978)Google Scholar
  38. Yaacobi, Y., Lotan, N., Sideman, S.: A Hybrid System for Zero Order Drug Delivery Regimen, Polym. Sci. Technol. 34, 379–386 (1986)Google Scholar
  39. Yolles, S., Eldridge, J., Leafe, T., Woodland, J. H. R., Blake, D. R., Meyer, F.: Long-Acting Delivery Systems for Narcotic Antagonists, pp. 177–193. In: Controlled Release of Biologically Active Agents, A. C. Tanguary and R. E. Lacey (Eds.), Plenum Press, New York (1974)Google Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1989

Authors and Affiliations

  • Liang-tseng Fan
    • 1
  • Satish Kumar Singh
    • 2
  1. 1.Department of Chemical EngineeringKansas State UniversityManhattanUSA
  2. 2.Kabi PharmaSolnaSweden

Personalised recommendations