Skip to main content

The Physics of Optical Frequency Standards Using Saturation Methods

  • Conference paper
Frequency Standards and Metrology

Abstract

This paper presents a survey of our present theoretical description of the physical phenomena which play an important role in optical frequency standards based on saturation methods. Such systems consist of a set of laser beams (usually counter-propagating along the same axis but sometimes separated in space) which propagate in a TEM mode and interact with 2 or 3 level systems (atoms or molecules in gas phase in a cell or in a molecular beam). The interaction physics is dominated by the relative motion of these two systems which gives rise to residual first-order Doppler effects usually taking the form of transit effects (wavefront curvature shift...) and to the important second-order Doppler effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.L. Barger and J.L. Hall, Phys. Rev. Lett. 22, 4 (1969)

    Article  ADS  Google Scholar 

  2. G. Kramer, C.O. Weiss and J. Helmcke, Z. Naturforsch. 30a, 1128 (1975)

    ADS  Google Scholar 

  3. N.G. Basov et al, Sov. J. Quantum Electron. 17, 545–547 (1987) and references therein

    Article  ADS  Google Scholar 

  4. Ch. J. Bordé et al., C.R. Acad. Sc. Paris 277B. 381 (1973);

    Google Scholar 

  5. Ch. J. Bordé et al., J. de Physique France, 42 1393 (1981)

    Article  Google Scholar 

  6. B. Couillaud and A. Ducasse, Phys. Rev. Lett. Q5, 1276 (1975)

    Article  ADS  Google Scholar 

  7. B.K. Garside, IEEE J. of Qu. El., QE4, 940 (1968)

    Google Scholar 

  8. H. Maeda and K. Shimoda, J. Appl. Phys. 42, 1235 (1975)

    Article  ADS  Google Scholar 

  9. A. Le Floch et al., Phys. Rev. Lett. 4., 544 (1980)

    Google Scholar 

  10. A. Le Floch et al., IEEE J. of Qu. EI. QE-19 1474 (1983)

    Article  ADS  Google Scholar 

  11. G. Stephan et al., J. Physique, France 42, 1623 (1981)

    Article  Google Scholar 

  12. G. Stephan et al., J. Physique, France 42, 255 (1982)

    Article  Google Scholar 

  13. G. Stephan et al., Phys. Rev. A 28, 2344 (1983)

    Article  ADS  Google Scholar 

  14. G. Stephan et al., Phys. Rev. A 28, 3450 (1983)

    Article  ADS  Google Scholar 

  15. G. Stephan et al., Phys. Rev. A 30, 1925 (1984)

    Article  ADS  Google Scholar 

  16. G. Stephan et al., J. Physique Lett. 45, L653 (1984)

    Article  Google Scholar 

  17. R. Felder, Metrologia 22, 101 (1986)

    Article  ADS  Google Scholar 

  18. A. Titov, Kvant. Elektronika. 8, 2040 (1981)

    Google Scholar 

  19. A. Titov, Opt. Comm. 42, 419 (1982)

    Article  ADS  Google Scholar 

  20. P. Cerez and R. Felder, Appl. Opt. 22, 1251 (1983)

    Article  ADS  Google Scholar 

  21. P. Cerez and R. Felder, Appl. Opt. 22, 3313 (1983)

    Article  ADS  Google Scholar 

  22. A. Le Floch et al., J. Physique Lett. 43, L 493 (1982)

    Article  Google Scholar 

  23. G. Stephan, J. Physique Lett. 44, L 361 (1983)

    Google Scholar 

  24. A. Le Floch., Opt. Lett. Q, 48 (1981)

    Google Scholar 

  25. E.N. Bazarov et al., Sov. J. Quantum Electron. 15, 1036 (1985)

    Article  ADS  Google Scholar 

  26. E.N. Bazarov et al., Sov. J. Quantum Electron. 1517, 1421 (1987)

    Article  ADS  Google Scholar 

  27. H. Kogelnik, Appl. Opt. 4, 1562 (1965)

    Article  ADS  Google Scholar 

  28. W.E. Lamb, Phys. Rev. A1341429 (1964)

    Article  ADS  Google Scholar 

  29. H. Greenstein, Phys. Rev. 175, 438 (1968)

    Article  ADS  Google Scholar 

  30. Ch. J. Bordé, J.L. Hall, C.V. Kunasz and D.G. Hummer, Phys. Rev. A14, 236 (1976)

    Article  ADS  Google Scholar 

  31. Ch. J. Bordé, Density matrix equations and diagrams for high resolution non-linear laser spectroscopy, Advances in laser spectroscopy, Plenum Press, 1–70 (1982)

    Google Scholar 

  32. Ch. J. Bordé, S. Avrillier and M. Gorlicki, J. Phys. Lett. 38, L249–252 (1977)

    Article  Google Scholar 

  33. Ch. J. Bordé, S. Avrillier and M. Gorlicki, J. Phys. Lett. 40, L35 (1979)

    Article  Google Scholar 

  34. J.L. Hall and Ch. J. Bordé, Appl. Phys. Lett. 22, 788 (1976)

    Article  ADS  Google Scholar 

  35. Ch. J. Bordé, G. Camy and B. Decomps, Phys. Rev. 249, 254 (1979)

    Google Scholar 

  36. J.L. Hall, Ch. J. Bordé and K. Uehara, Phys. Rev. Lett. QZ, 1339 (1976)

    Google Scholar 

  37. Ch. J. Bordé, C.R. Acad. Sc. Paris, 2831, 181 (1976)

    Google Scholar 

  38. Ch. J. Bordé, J. Sharma, Ph. Tourrenc and Th. Damour, J. Phys. Lett. 4.4, L983 (1983)

    Google Scholar 

  39. G. Camy, Ch. J. Bordé and M. Ducloy, Opt. Comm. 41, 325 (1982)

    Article  ADS  Google Scholar 

  40. Ch. J. Bordé, Revue du CETHEDEC, Ondes et Signal NS83–1, 1–118 (1983)

    Google Scholar 

  41. E.V. Baklanov and B. Ya. Dubetsky, J. Phys. France 4a, 1307–1313 (1988) and references therein

    Google Scholar 

  42. Ch. J. Bordé and J.L. Hall, VIIIth International Quantum Electronics Conference, San Francisco (1974)

    Google Scholar 

  43. J.L. Hall, Ch. J. Bordé and C.V. Kunasz, Bull. Am. Phys. Soc. 19, 448 (1974)

    Google Scholar 

  44. Ch. J. Bordé, Ch. Chardonnet and D. Mayou, in Laser Spectroscopy VIII, Springer,381–385 (1987)

    Google Scholar 

  45. Ch. J. Bordé et al., Phys. Rev. A30, 1836 (1984)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Bordé, C.J. (1989). The Physics of Optical Frequency Standards Using Saturation Methods. In: De Marchi, A. (eds) Frequency Standards and Metrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74501-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74501-0_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74503-4

  • Online ISBN: 978-3-642-74501-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics