Advertisement

Epiphytic Bromeliads

  • J. A. C. Smith
Part of the Ecological Studies book series (ECOLSTUD, volume 76)

Abstract

After the Orchidaceae, the Bromeiiaceae tie with the Araceae as the secondlargest family of epiphytic vascular plants (Kress 1986, and see Chap. 9; Gentry and Dodson 1987). The Flora Neotropica currently lists a total of 2088 species for the Bromeiiaceae (Smith and Downs 1974, 1977, 1979), but there is little doubt that the true number is nearer 2500 (Benzing 1980). Approximately half of these species are epiphytic, although this is still a factor of ten fewer than the total number of epiphytic orchids (Chap. 9).

Keywords

Crassulacean Acid Metabolism Crassulacean Acid Metabolism Plant Epiphytic Bromeliad Xylem Tension Epiphytic Habitat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams WW III, Martin CE (1986a) Physiological consequences of changes in life form of the Mexican epiphyte Tillandsia deppeana (Bromeliaceae). Oecologia 70:298–304CrossRefGoogle Scholar
  2. Adams WW III, Martin CE (1986b) Morphological changes accompanying the transition from juvenile (atmospheric) to adult (tank) forms in the Mexican epiphyte Tillandsia deppeana (Bromeliaceae). Am J Bot 73:1207–1214CrossRefGoogle Scholar
  3. Adams WW III, Martin CE (1986c) Heterophylly and its relevance to evolution within the Tillandsioideae. Selbyana 9:121–125Google Scholar
  4. Adams WW III, Osmond CB (1988) Internal C02 supply during photosynthesis of sun and shade grown CAM plants in relation to photoinhibition. Plant Physiol 86:117–123PubMedCrossRefGoogle Scholar
  5. Beard JS (1946) The natural vegetation of Trinidad. Oxford Forestry Memoirs, Number 20. Oxford University PressGoogle Scholar
  6. Benzing DH (1976) Bromeliad trichomes:structure, function, and ecological significance. Selbyana 1:330–348Google Scholar
  7. Benzing DH (1980) The biology of the bromeliads. Mad River Press, Eureka, CaliforniaGoogle Scholar
  8. Benzing DH (1986) The vegetative basis of vascular epiphytism. Selbyana 9:23–43Google Scholar
  9. Benzing DH (1987) Vascular epiphytism:taxonomic participation and adaptive diversity. Ann MO Bot Gard 74:183–204CrossRefGoogle Scholar
  10. Benzing DH, Burt KM (1970) Foliar permeability among twenty species of the Bromeliaceae. Bull Torrey Bot Club 97:269–279CrossRefGoogle Scholar
  11. Benzing DH, Renfrow A (1971a) The significance of photosynthetic efficiency to habitat preference and phylogeny among tillandsioid bromeliads. Bot Gaz 132:19–30CrossRefGoogle Scholar
  12. Benzing DH, Renfrow A (1971b) Significance of the patterns of C02 exchange to the ecology and phylogeny of the Tillandsioideae ( Bromeliaceae ). Bull Torrey Bot Club 98:322–327CrossRefGoogle Scholar
  13. Benzing DH, Henderson K, Kessel B, Sulak J (1976) The absorptive capacities of bromeliad trichomes. Am J Bot 63:1009–1014CrossRefGoogle Scholar
  14. Benzing DH, Seemann J, Renfrow A (1978) The foliar epidermis in Tillandsioideae ( Bromeliaceae) and its role in habitat selection. Am J Bot 65:359–365CrossRefGoogle Scholar
  15. Benzing DH, Givnish TJ, Bermudes D (1985) Absorptive trichomes in Brocchinia reducta ( Bromeliaceae) and their evolutionary and systematic significance. Syst Bot 10:81–91CrossRefGoogle Scholar
  16. Biebl R (1964) Zum Wasserhaushalt von Tillandsia recurvata L. und Tillandsia usneoides L. auf Puerto Rico. Protoplasma 58:345–368CrossRefGoogle Scholar
  17. Björkman O (1981) Responses to different quantum flux densities. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, New Series, Vol 12A, Physiological plant ecology I, Responses to the physical environment. Springer, Berlin Heidelberg New York, pp 57–107Google Scholar
  18. Boardman NK (1977) Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol 28:355–377CrossRefGoogle Scholar
  19. Burt-Utley K, Utley JF (1977) Phytogeography, physiological ecology and the Costa Rican genera of Bromeliaceae. Hist Nat Costa Rica 1:9–29Google Scholar
  20. Coutinho LM (1963) Algumas informaqoes sobre a ocorrencia do “Efeito de De Saussure” em epifitas e herbaceas terrestres da mata pluvial. Bol Fac Filos Cienc Let Univ Sao Paulo Ser Bot 288,20:81–98Google Scholar
  21. Coutinho LM (1969) Novas observagoes sobre a ocorrencia do “Efeito de De Saussure” e suas relaqoes com a suculencia, a temperatura folear e os movimentos estomaticos. Bol Fac Filos Cienc Let Univ Sao Paulo Ser Bot 331, 24:77–102Google Scholar
  22. Edwards GE, Walker DA (1983) C;!, C4:Mechanisms, and cellular and environmental regulation, of photosynthesis. Blackwell, OxfordGoogle Scholar
  23. Garth RE (1964) The ecology of Spanish moss (Tillandsia usneoides):its growth and distribution. Ecology 45:470–481CrossRefGoogle Scholar
  24. Gentry AH, Dodson CH (1987) Diversity and biogeography of neotropical vascular epiphytes. Ann MO Bot Gard 74:205–233CrossRefGoogle Scholar
  25. Gessner F (1956) Der Wasserhaushalt der Epiphyten und Lianen. In:Ruhland W (ed) Handbuch der Pflanzenphysiologie, Band III, Pflanze und Wasser. Springer, Berlin Gottingen Heidelberg, pp 915–950Google Scholar
  26. Gibson AC, Nobel PS (1986) The cactus primer. Harvard University Press, CambridgeGoogle Scholar
  27. Gilmartin A J (1983) Evolution of mesic and xeric habits in Tillandsia and Vriesea (Bromeiiaceae). Syst Bot 8:233–242CrossRefGoogle Scholar
  28. Gilmartin A J, Brown GK (1986) Cladistic tests of hypotheses concerning evolution of xerophytes and mesophytes within Tillandsia subg. Phytarrhiza (Bromeiiaceae). Am J Bot 73:387–397CrossRefGoogle Scholar
  29. Gilmartin AJ, Brown GK (1987) Bromeliales, related monocots and resolution of relationships among Bromeiiaceae subfamilies. Syst Bot 12:493–500CrossRefGoogle Scholar
  30. Givnish TJ, Burkhardt EL, Happel RE, Weintraub JD (1984) Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. Am Nat 124:479–497CrossRefGoogle Scholar
  31. Gould SJ, Vrba ES (1982) Exaptation — a missing term in the science of form. Paleobiology 8:4–15Google Scholar
  32. Griffiths H (1988a) Crassulacean acid metabolism:a re-appraisal of physiological plasticity in form and function. Adv Bot Res 15:43–92CrossRefGoogle Scholar
  33. Griffiths H (1988b) Carbon balance during CAM:an assessment of respiratory C02 recycling in the epiphytic bromeliads Aechmea nudicaulis and Aechmea fendleri. Plant Cell Environ 11:603–611CrossRefGoogle Scholar
  34. Griffiths H, Smith JAC (1983) Photosynthetic pathways in the Bromeiiaceae of Trinidad:relations between life-forms, habitat preference and the occurrence of CAM. Oecologia 60:176–184CrossRefGoogle Scholar
  35. Griffiths H, Lüttge U, Stimmel K-H, Crook CE, Griffiths NM, Smith JAC (1986) Comparative ecophysiology of CAM and Q bromeliads. III. Environmental influences on C02 assimilation and transpiration. Plant Cell Environ 9:385–393CrossRefGoogle Scholar
  36. Griffiths H, Smith JAC, Lüttge U, Popp M, Cram WJ, Diaz M, Lee HSJ, Medina E, Schafer C, Stimmel K-H (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela. IV. Tillandsia flexuosa Sw. and Schomburgkia humboldtiana Reichb., epiphytic CAM plants. New Phytol 111:273–282CrossRefGoogle Scholar
  37. Grubb PJ (1977) Control of forest growth and distribution on wet tropical mountains with special reference to mineral nutrition. Annu Rev Ecol Syst 8:83–107CrossRefGoogle Scholar
  38. Grubb PJ, Whitmore TC (1966) A comparison of montane and lowland rain forest in Ecuador. II. The climate and its effect on the distribution and physiognomy of the forests. J Ecol 54:303–333CrossRefGoogle Scholar
  39. Harris JA (1918) On the osmotic concentration of the tissue fluids of phanerogamic epiphytes. Am J Bot 5:490–506CrossRefGoogle Scholar
  40. Jones HG (1983) Plants and microclimate. A quantitative approach to environmental plant physiology. Cambridge University Press, CambridgeGoogle Scholar
  41. Kelly DL (1985) Epiphytes and climbers of a Jamaican rain forest:vertical distribution, life forms and life histories. J Biogeogr 12:223–241CrossRefGoogle Scholar
  42. Kenyon WH, Severson RF, Black CC Jr (1985) Maintenance carbon cycle in crassulacean acid metabolism plant leaves. Source and compartmentation of carbon for nocturnal malate synthesis. Plant Physiol 77:183–189PubMedCrossRefGoogle Scholar
  43. Kluge M, Ting IP (1978) Crassulacean acid metabolism. Analysis of an ecological adaptation. Springer, Berlin Heidelberg New YorkGoogle Scholar
  44. Kluge M, Lange OL, von Eichmann M, Schmid M (1973) Diurnaler Saurerhythmus bei Tillandsia usneoides:Untersuchungen iiber den Weg des Kohlenstoffs sowie die Abhangigkeit des CO.,-Gaswechsels von Lichtintensitat, Temperatur und Wassergehalt der Pflanze. Planta 112:357–372CrossRefGoogle Scholar
  45. Kress WJ (1986) The systematic distribution of vascular epiphytes. Selbyana 9:2–22Google Scholar
  46. Lange OL, Medina E (1979) Stomata of the CAM plant Tillandsia recurvata respond directly to humidity. Oecologia 40:357–363CrossRefGoogle Scholar
  47. Lee HSJ, Lüttge U, Medina E, Smith JAC, Cram WJ, Diaz M, Griffiths H, Popp M, Schafer C, Stimmel K-H, Thonke B (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela. III. Bromelia humilis Jacq., a terrestrial CAM bromeliad. New Phytol 111:253–271CrossRefGoogle Scholar
  48. Lüttge U (1985) Epiphyten:Evolution and Okophysiologie. Naturwissenschaften 72:557–566CrossRefGoogle Scholar
  49. Lüttge U (1987) Carbon dioxide and water demand:crassulacean acid metabolism (CAM), a versatile ecological adaptation exemplifying the need for integration in ecophysiological work. New Phytol 106:593–629CrossRefGoogle Scholar
  50. Lüttge U, Ball E (1987) Dark respiration of CAM plants. Plant Physiol Biochem 25:3–10Google Scholar
  51. Lüttge U, Smith JAC (1984) Structural, biophysical, and biochemical aspects of the role of leaves in plant adaptation to salinity and water stress. In:Staples RC, Toenniessen GH (eds) Salinity tolerance in plants. Strategies for crop improvement. John Wiley, New York, pp 125–150Google Scholar
  52. Lüttge U, Smith JAC (1988) CAM plants. In:Baker DA, Hall JL (eds) Solute transport in plant cells and tissues. Longman Scientific and Technical, Harlow, Essex, pp 417–452Google Scholar
  53. Lüttge U, Ball E, Kluge M, Ong BL (1986a) Photosynthetic light requirements of various tropical vascular epiphytes. Physiol Veg 24:315–331Google Scholar
  54. Lüttge U, Klauke B, Griffiths H, Smith JAC, Stimmel K-H (1986b) Comparative ecophysiology of CAM and C;5 bromeliads. V. Gas exchange and leaf structure of the C:, bromeliad Pitcairnia integrifolia. Plant Cell Environ 9:411–419CrossRefGoogle Scholar
  55. Lüttge U, Stimmel K-H, Smith JAC, Griffiths H (1986c) Comparative ecophysiology of CAM and Q bromeliads. II. Field measurements of gas exchange of CAM bromeliads in the humid tropics. Plant Cell Environ 9:377–383CrossRefGoogle Scholar
  56. Martin CE, Adams WW III (1987) Crassulacean acid metabolism, carbon dioxide recycling, and tissue desiccation in the Mexican epiphyte Tillandsia schiedeana Steud. ( Bromeliaceae ). Photosynth Res 11:237–244CrossRefGoogle Scholar
  57. Martin CE, Siedow JN (1981) Crassulacean acid metabolism in the epiphyte Tillandsia usneoides L. (Spanish moss). Responses of C02 exchange to controlled environmental conditions. Plant Physiol 68:335–339PubMedCrossRefGoogle Scholar
  58. Martin CE, Christensen NL, Strain BR (1981) Seasonal patterns of growth, tissue acid fluctuations, and 14C02 uptake in the crassulacean acid metabolism epiphyte Tillandsia usneoides L. (Spanish moss). Oecologia 49:322–328CrossRefGoogle Scholar
  59. Martin CE, McLeod KW,Eades CA, Pitzer AF (1985) Morphological and physiological responses to irradiance in the CAM epiphyte Tillandsia usneoides L. (Bromeliaceae). Bot Gaz 146:489–494CrossRefGoogle Scholar
  60. Martin CE, Eades CA, Pitner RA (1986) Effects of irradiance on crassulacean acid metabolism in the epiphyte Tillandsia usneoides L. ( Bromeliaceae ). Plant Physiol 80:23–26PubMedCrossRefGoogle Scholar
  61. McWilliams EL (1970) Comparative rates of dark C02 uptake and acidification in the Bromeliaceae, Orchidaceae, and Euphorbiaceae. Bot Gaz 131:285–290CrossRefGoogle Scholar
  62. McWilliams EL (1974) Evolutionary ecology. In:Smith LB, Downs RJ, Flora Neotropica, Monograph No. 14, Part 1, Pitcairnioideae (Bromeliaceae), Hafner, New York, pp 40–55Google Scholar
  63. Medina E (1974) Dark C02 fixation, habitat preference and evolution within the Bromeliaceae. Evolution 28:677–686CrossRefGoogle Scholar
  64. Medina E (1986) Forests, savannas and montane tropical environments. In:NR Baker, SP Long (eds) Photosynthesis in contrasting environments. Elsevier Science, Amsterdam, pp 139–171Google Scholar
  65. Medina E, Troughton JH (1974) Dark C02 fixation and the carbon isotope ratio in Bromeliaceae. Plant Sci Lett 2:357–362CrossRefGoogle Scholar
  66. Medina E, Delgado M, Troughton JH, Medina JD (1977) Physiological ecology of C02 fixation in Bromeliaceae. Flora 166:137–152Google Scholar
  67. Medina E, Olivares E, Diaz M (1986) Water stress and light intensity effects on growth and nocturnal acid accumulation in a terrestrial CAM bromeliad (Bromelia humilis Jacq.) under natural conditions. Oecologia 70:441–446CrossRefGoogle Scholar
  68. Mez C (1904) Physiologische Bromeliaceen-Studien. I. Die Wasser-Okonomie der extrem atmospharischen Tillandsien. Jahrb Wiss Bot 40:157–229Google Scholar
  69. Milburn TR, Pearson DJ, Ndegwe NA (1968) Crassulacean acid metabolism under natural tropical conditions. New Phytol 67:883–897CrossRefGoogle Scholar
  70. Nobel PS (1983) Biophysical plant physiology and ecology. Freeman, San FranciscoGoogle Scholar
  71. Nobel PS (1988) Environmental biology of agaves and cacti. Cambridge University Press, CambridgeGoogle Scholar
  72. Nyman LP, Davis JP, O’Dell S J, Arditti J, Stephens GC, Benzing DH (1987) Active uptake of amino acids by leaves of an epiphytic vascular plant, Tillandsia paueifolia ( Bromeliaceae ). Plant Physiol 83:681–684PubMedCrossRefGoogle Scholar
  73. Osmond CB (1978) Crassulacean acid metabolism:a curiosity in context. Annu Rev Plant Physiol 29:379–414CrossRefGoogle Scholar
  74. Osmond CB (1982) Carbon cycling and stability of the photosynthetic apparatus in CAM. In:Ting IP, Gibbs M (eds) Crassulacean acid metabolism. American Society of Plant Physiologists, Rockville, Maryland, pp 112–127Google Scholar
  75. Osmond CB, Winter K, Ziegler H (1982) Functional significance of different pathways of CO, fixation in photosynthesis. In:Lange OL, Nobel PS,Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, New Series, Vol 12B, Physiological plant ecology II, Water relations and carbon assimilation. Springer, Berlin Heidelberg New York, pp 479–547Google Scholar
  76. Owen TP Jr, Benzing DH, Thomson WW (1988) Apoplastic and ultrastructural characterizations of the trichomes from the carnivorous bromeliad Brocchinia reducta. Can J Bot 66:941–948CrossRefGoogle Scholar
  77. Pittendrigh CS (1948) The bromeliad—Anopheles—malaria complex in Trinidad. I—The bromeliad flora. Evolution 2:58–89PubMedCrossRefGoogle Scholar
  78. Popp M, Kramer D, Lee H, Diaz M, Ziegler H, Lüttge U (1987) Crassulacean acid metabolism in tropical dicotyledonous trees of the genus Clusia. Trees 1:238–247CrossRefGoogle Scholar
  79. Rauh W (1979) Kakteen an ihren Standorten. Paul Parey, BerlinGoogle Scholar
  80. Rauh W (1981) Bromelien:Tillandsien und andere kulturwiirdige Bromelien, zweite, neubearbeitete Auflage. Eugen Ulmer, StuttgartGoogle Scholar
  81. Richards PW (1952) The tropical rain forest. Cambridge University Press, CambridgeGoogle Scholar
  82. Rohweder O (1956) Die Farinosae in der Vegetation von El Salvador. Abhandlungen aus dem Gebiet der Auslandskunde, Band 61 — Reihe C, Naturwissenschaften (Band 18). Universitat HamburgGoogle Scholar
  83. Sale PJM, NealesTF (1980) Carbon dioxide assimilation by pineapple plants, Ananascomosus(L.) Merr. I. Effects of daily irradiance. Aust J Plant Physiol 7:363–373CrossRefGoogle Scholar
  84. Schafer C, Lüttge U (1988) Effects of high irradiances on photosynthesis, growth and crassulacean acid metabolism in the epiphyte Kalanchoe uniflora. Oecologia 75:567–574CrossRefGoogle Scholar
  85. Schimper AFW (1884) Ueber Bau und Lebensweise der Epiphyten Westindiens. Bot Zbl 17:192–195 et seq.Google Scholar
  86. Schimper AFW (1888) Die epiphytische Vegetation Amerikas. Botanische Mittheilungen aus den Tropen, Heft 2. Gustav Fischer, JenaGoogle Scholar
  87. Schimper AFW (1898) Pflanzengeographie auf physiologischer Grundlage. Gustav Fisher Verlag, JenaGoogle Scholar
  88. Schimper AFW (1935) Pflanzengeographie auf physiologischer Grundlage, 3. Auflage, FC von Faber (ed), Erster Band. Gustav Fischer, JenaGoogle Scholar
  89. Schulz E (1930) Beitrage zur physiologischen und phylogenetischen Anatomie der vegetativen Organe der Bromeliaceen. Bot Arch 29:122–209Google Scholar
  90. Sideris CP, Young HY, Chun HHQ (1948) Diurnal changes and growth rates as associated with ascorbic acid, titratable acidity, carbohydrate and nitrogenous fractions in the leaves of Ananas comosus ( L.) Merr. Plant Physiol 23:38–69PubMedCrossRefGoogle Scholar
  91. Sinclair R (1983a) Water relations of tropical epiphytes. I. Relationships between stomatal resistance, relative water content and the components of water potential. J Exp Bot 34:1652–1663CrossRefGoogle Scholar
  92. Smith JAC (1984) Water relations in CAM plants. In:Medina E (ed) Physiological ecology of CAM plants. International Center for Tropical Ecology ( Unesco-IVIC ), Caracas, pp 30–51Google Scholar
  93. Smith JAC, Lüttge U (1985) Day-night changes in leaf water relations associated with the rhythm of crassulacean acid metabolism in Kalanchoe daigremontiana. Planta 163:272–282CrossRefGoogle Scholar
  94. Smith JAC, Griffiths H, Bassett M, Griffiths NM (1985) Day-night changes in the leaf water relations of epiphytic bromeliads in the rain forests of Trinidad. Oecologia 67:475–485CrossRefGoogle Scholar
  95. Smith JAC, Griffiths H, Lüttge U (1986a) Comparative ecophysiology of CAM and C3 bromeliads. I. The ecology of the Bromeiiaceae in Trinidad. Plant Cell Environ 9:359–376CrossRefGoogle Scholar
  96. Smith JAC, Griffiths H, Lüttge U, Crook CE, Griffiths NM, Stimmel K-H (1986b) Comparative ecophysiology of CAM and Q bromeliads. IV. Plant water relations. Plant Cell Environ 9:395–410CrossRefGoogle Scholar
  97. Smith JAC, Schulte PJ, Nobel PS (1987) Water flow and water storage in Agave deserti:osmotic implications of crassulacean acid metabolism. Plant Cell Environ 10:639–648CrossRefGoogle Scholar
  98. Smith LB (1934) Geographical evidence on the lines of evolution in the Bromeliaceae. Bot Jahrb 66:446–468Google Scholar
  99. Smith LB, Downs RJ (1974) Flora Neotropica, Monograph No. 14, Part 1, Pitcairnioideae (Bromeliaceae). Hafner, New YorkGoogle Scholar
  100. Smith LB, Downs RJ (1977) Flora Neotropica, Monograph No. 14, Part 2, Tillandsioideae (Bromeliaceae). Hafner, New YorkGoogle Scholar
  101. Smith LB, Downs RJ (1979) Flora Neotropica, Monograph No. 14, Part 3, Bromelioideae (Bromeliaceae). Hafner, New YorkGoogle Scholar
  102. Smith LB, Pittendrigh CS (1967) Bromeliaceae. In:Flora of Trinidad and Tobago, Vol III, Part II, Epigynae (pars). Ministry of Agriculture, Industry and Commerce, Trinidad and Tobago, pp 35–91Google Scholar
  103. Steudle E, Smith JAC, Luttge U (1980) Water-relation parameters of individual mesophyll cells of the crassulacean acid metabolism plant Kalanchoe daigremontiana Plant Physiol 66:1155–1163PubMedCrossRefGoogle Scholar
  104. Sugden AM (1981) Aspects of the ecology of vascular epiphytes in two Colombian cloud forests. II. Habitat preferences of Bromeliaceae in the Serrania de Macuira. Selbyana 5:264–273Google Scholar
  105. Sugden AM (1982) The vegetation of the Serrania de Macuira, Guajira, Colombia:a contrast of arid lowlands and an isolated cloud forest. J Arnold Arbor 63:1–30Google Scholar
  106. Sugden AM (1986) The montane vegetation and flora of Margarita Island, Venezuela. J Arnold Arbor 67:187–232Google Scholar
  107. Sugden AM, Robins RJ (1979) Aspects of the ecology of vascular epiphytes in two Colombian cloud forests. I. The distribution of the epiphytic flora. Biotropica 11:173–188CrossRefGoogle Scholar
  108. Teeri JA (1982a) Carbon isotopes and the evolution of C4 photosynthesis and crassulacean acid metabolism. In:Nitecki MH (ed) Biochemical aspects of evolutionary biology. The University of Chicago Press, Chicago, pp 93–130Google Scholar
  109. Teeri JA (1982b) Photosynthetic variation in the Crassulaceae. In:Ting IP, Gibbs M (eds) Crassulacean acid metabolism. American Society of Plant Physiologists, Rockville, Maryland, pp 244–259Google Scholar
  110. Tietze M (1906) Physiologische Bromeliaceen-Studien II. Die Entwickelung der wasseraufnehmenden Bromeliaceen-Trichome. Z Naturwiss 78:1–50Google Scholar
  111. Ting IP (1985) Crassulacean acid metabolism. Annu Rev Plant Physiol 36:595–622CrossRefGoogle Scholar
  112. Tomlinson PB (1969) Anatomy of the monocotyledons (CR Metcalfe, ed), I II Commelinales—Zingiberales. Oxford University PressGoogle Scholar
  113. Tomlinson PB (1970) Monocotyledons—morphology and anatomy. Adv Bot Res 3:207–292CrossRefGoogle Scholar
  114. Varadarajan GS, Gilmartin AJ (1988a) Phylogenetic relationships of groups of genera within the subfamily Pitcairnioideae (Bromeliaceae). Syst Bot 13:283–293CrossRefGoogle Scholar
  115. Varadarajan GS, Gilmartin AJ (1988b) Taxonomic realignments within the subfamily Pitcairnioideae ( Bromeliaceae ). Syst Bot 13:294–299CrossRefGoogle Scholar
  116. Walter H (1960) Einfuhrung in die Phytologie, Band III, Grundlagen der Pflanzenverbreitung, 1. Teil, Standortslehre (analytisch-okologische Geobotanik), 2. Auflage. Eugen Ulmer, StuttgartGoogle Scholar
  117. Walter H, Breckle S-W (1986) Ecological systems of the geobiosphere, Vol 2, Tropical and subtropical zonobiomes. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  118. Warburg O (1886) Uber die Bedeutung der organischen Sauren fur den Lebensprozess der Pflanzen (speziell der sog. Fettpflanzen). Untersuchungen Bot Inst Tubingen 2:53–150Google Scholar
  119. Winter K (1985) Crassulacean acid metabolism. In:Barber J, Baker NR (eds) Photosynthetic mechanisms and the environment. Elsevier Science, AmsterdamGoogle Scholar
  120. Winter K, Wallace BJ, Stocker GC, Roksandic Z (1983) Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia 57:129–141CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. A. C. Smith
    • 1
  1. 1.Department of BotanyUniversity of EdinburghEdinburghUK

Personalised recommendations