Immunohistological Demonstration of Osteonectin in Normal Bone Tissue and in Bone Tumors

  • A. Schulz
  • G. Jundt
Part of the Current Topics in Pathology book series (CT PATHOLOGY, volume 80)


The principal protein component of bone matrix is type-I collagen. Although it is the only type of collagen present it is not bone specific because it is also found in nonmineralizing connective tissue of the skin, lung, liver, eyes, and tendons (Church 1981; Gay and Rhodes 1980; von der Mark 1981). Therefore the specific quality of bone matrix as a mineralizing connective tissue is probably due to its 10% noncollagenous protein content. Based on this assumption a noncollagenous protein was extracted from fetal bovine bone that showed binding properties for collagen as well as for hydroxyapatite (the main mineral constituent of bone) and was therefore named osteonectin (Termine et al. 1981).


Bone Matrix Fibrous Dysplasia Osteoid Osteoma Myositis Ossificans Noncollagenous Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beresford WA (1981) Chondroid bone, secondary cartilage and mataplasia. Urban and Schwarzenberg, BaltimoreGoogle Scholar
  2. Bonnucci E, Bianco P, Hayashi Y, Termine JD (1986) Ultrastructural immunohistochemical localization of non-collagenous proteins in bone, cartilage and developing enamel. In: Ali SY (ed) Cell mediated calcification and matrix vesicles. Elsevier, Amsterdam, pp 33–38Google Scholar
  3. Brozman M (1978) Immunohistochemical analysis of formaldehyde- and trypsin- or pepsin-treated material. Acta Histochem 63: 251–260PubMedGoogle Scholar
  4. Bruland O, Fodstad O, Fundernd S, Pihl A (1986) New monoclonal antibodies specific for human sacromas. Int J Cancer 38: 27–31PubMedCrossRefGoogle Scholar
  5. Church RL (1981) Chromosome mapping of connective tissue proteins. Int Rev Connect Tiss Res 9: 99–150CrossRefGoogle Scholar
  6. Dahlin DC, Unni KK (1986) Bone tumors, 4th edn. Charles C. Thomas, SpringfieldGoogle Scholar
  7. Fisher LW, Termine JD (1985) Noncollagenous proteins influencing the local mechanisms of calcification. Clin Orthop 200: 362–385PubMedGoogle Scholar
  8. Fisher LW, Termine JD, Dejter SW Jr et al. (1983) Proteoglycans of developing bone. J Biol Chem 258: 6588–6594PubMedGoogle Scholar
  9. Fisher LW, Whitson SW, Avioli LV, Termine JD (1983) Matrix sialoprotein of developing bone. J Biol Chem 258: 12723–12727PubMedGoogle Scholar
  10. Fisher LW, Hawkins GR, Tuross N, Termine JD (1987) Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral compartment of developing human bone. J Biol Chem 262: 9702–9708PubMedGoogle Scholar
  11. Fornasier VL (1981) Transmission electron microscopy. Studies of osteoid maturation. In: Jee WS, Parifitt AM (eds) Bone histomorphometry. Armour Montagu, Levallois, France, pp 103–108Google Scholar
  12. Friedenstein AJ (1973) Determined and inducible osteogenic precursor cells. In: Hard tissue growth, repair, and mineralization (CIBA Foundation Symposium), Blackwell, London, pp 169–185Google Scholar
  13. Gay S, Rhodes RK (1980) Immunohistochemical demonstration of the genetically-distinct collagen types in human skeletal tissues. Metab Bone Dis Rel Res 2: 97–101Google Scholar
  14. Gehron Robey P, Termine JD (1985) Human bone cells in vitro. Calcif Tissue Int 37: 453–460CrossRefGoogle Scholar
  15. Gehron Robey P, Fisher LW, Stubbs JT, Termine JD (1987) Biosynthesis of osteonectin and a small proteoglycan (PG-II) by connective tissue cells in vitro. Development and diseases of cartilage and bone matrix, pp 115–125Google Scholar
  16. Gravanis MB, Giansanti JS (1971) Benign chondroblastoma. Report of four cases with a discussion of the presence of ossification. Am J Clin Pathol 55: 624–631PubMedGoogle Scholar
  17. Holland PWH, Harper SJ, McVey JH, Hogan BLM (1987) In vito expression of mRNA for the Ca++-binding protein SPARC (osteonectin) revealed by in situ hybridization. J Cell Biol 105: 473–482PubMedCrossRefGoogle Scholar
  18. Hsu SM, Raine L, Fanger H (1984) Use of avidin-biotin peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29: 577–580CrossRefGoogle Scholar
  19. Huvos AG (1979) Bone tumors. WB Saunders, PhiladelphiaGoogle Scholar
  20. Jundt G, Berghäuser K-H, Termine JD, Schulz A (1987) Osteonectin — a differentiation marker of bone cells. Cell Tissue Res 248: 409–415PubMedCrossRefGoogle Scholar
  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685PubMedCrossRefGoogle Scholar
  22. Mann K, Deutzmann R, Paulsson M, Timpl R (1987) Solubilization of protein BM-40 from a basement membrane tumor with chelating agents and evidence for its identity with osteonectin and SPARC. FEBS Lett 218: 167PubMedCrossRefGoogle Scholar
  23. Martin SE, Dwyer A, Kissane JM, Costa J (1982) Small-cell osteosarcoma. Cancer 50: 990–996PubMedCrossRefGoogle Scholar
  24. Nakagawa M, Urist MR (1977) Chondrogenesis in tissue cultures of muscle under the influence of a diffusible component of bone matrix. Proc Soc Exp Biol Med 154: 568–572PubMedGoogle Scholar
  25. Paul J (1979) Zell- und Gewebekulturen (translated and adapted by Maurer S and Maurer R). de Gruyter, Berlin, pp 219–220Google Scholar
  26. Price PA, Otsuka AS, Poser JW, Kristaponis J, Raman N (1976) Characterization of a-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci USA 73: 1447–1451PubMedCrossRefGoogle Scholar
  27. Remberger K, Gay S (1977) Immunohistochemical demonstration of different collagen types in the normal epiphyseal plate and in benign and malignant tumors of bone and cartilage. Z Krebsforsch 90: 95–106CrossRefGoogle Scholar
  28. Roessner A, Voss B, Rauterberg J, Immenkamp M, Gundermann E (1983) Biologie characterization of human bone tumors. J Cancer Res Clin Oncol 106: 234–239PubMedCrossRefGoogle Scholar
  29. Romanowski R, Jundt G, Altmannsberger M, Schulz A (1987) Immunelektronenmikroskopie von Zell- und Matrixantigenen in Knorpel- und Knochentumoren. Verh Dtsch Ges Pathol 71: 394Google Scholar
  30. Rosen G, Caparros B, Huvos AG et al. (1982) Preoperative chemotherapy for osteogenic sarcoma: selection of postoperative adjuvant chemotherapy based on the response of the primary tumor to preoperative chemotherapy. Cancer 49: 1221–1230PubMedCrossRefGoogle Scholar
  31. Roth J (1983) The colloidal gold marker system for light and electron microscopic cytochemistry. In: Bullock GR, Petrusz P (eds) Techniques in immunocytochemistry, vol 2. Academic, London, pp 217–284Google Scholar
  32. Schulz A (1977) A reliable method of preparing undecalcified human bone biopsies for electron microscopic investigation. Micr Acta 80: 7–18Google Scholar
  33. Schulz A, Jeckel HM, Berghäuser K-H, Jundt G (1986) Bildung und Abgabe von CEA durch Coloncarcinom-Zellen — Ultrastrukturell-immunoeytochemische Untersuchungen mit der Protein-A-Gold Methode. Verh Dtsch Ges Pathol 70: 269–273PubMedGoogle Scholar
  34. Schulz A, Romanowski R, Jundt G, Berghäuser K-H (1987) Immunoelectron microscopy of cell and matrix antigens in bone cells and bone tumors. Calcif Tissue Int 41 [Suppl 2]: 18Google Scholar
  35. Sternberger LA (1979) Immunocytochemistry, 2nd edn. Wiley, New YorkGoogle Scholar
  36. Straus W (1982) Imidazole increases the sensitivity of the cytochemical reaction for peroxidase with diamino-benzidine at a neutral pH. J Histochem Cytochem 30: 491–493PubMedCrossRefGoogle Scholar
  37. Termine JD (1987) Noncollagenous proteins of enamel and bone. Calcif Tissue Int 41 [Suppl 2]: 810Google Scholar
  38. Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26: 99–105PubMedCrossRefGoogle Scholar
  39. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from Polyacrylamid gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sei USA 76: 4350–4354CrossRefGoogle Scholar
  40. Tung PS, Domenicucci C, Wasi S, Sodek J (1985) Specific immunohistochemical localization of osteonectin and collagen types I and III in fetal and adult porcine dental tissues. J Histochem Cytochem 33: 531–540PubMedCrossRefGoogle Scholar
  41. van Noorden S, Polak JM (1983) Immunocytochemistry today — techniques and practice. In: Polak JM, van Noorden D (eds) Immunocytochemistry. Wright PSG, Bristol, pp 11–42Google Scholar
  42. von der Mark K (1981) Localization of collagen types in tissues. Int Rev Connect Tissue Res 9: 265–324PubMedGoogle Scholar
  43. Whitson SW, Harrison W, Dunlap Mk, Bowers DE Jr, Fisher LW, Robey PG, Termine JD (1984) Fetal bovine bone cells synthesize bone-specific matrix proteins. J Cell Biol 99: 607–614PubMedCrossRefGoogle Scholar
  44. Winkler K, Beron G, Kotz R et al. (1984) Neoadjuvant chemotherapy for osteogenic sarcoma: results of a cooperative German Austrian study. J Clin Oncol 2: 614–624Google Scholar
  45. Young MF, Bolander ME, Day AA, Ramis CI, Gehron Robey P, Yamada Y, Termine JD (1986) Osteonectin mRNA: distribution in normal and transformed cells. Nucleic Acids Res 14: 4483–4497PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • A. Schulz
  • G. Jundt

There are no affiliations available

Personalised recommendations