Advertisement

Sieve Elements pp 103-137 | Cite as

Dicotyledons

  • Ray F. Evert

Abstract

The sieve elements of angiosperms are regarded as the most highly evolved among vascular plants, and those of the dicotyledons have received the greatest attention in the literature on phloem. By definition, the sieve elements of dicotyledons are sieve-tube members; that is, sieve elements in which some of the sieve areas are more highly specialized (having larger pores) than others and are localized on the walls to form sieve plates (Esau 1969). Typically, the sieve plates occur on the end walls, and the sieve-tube members are arranged end-on-end to form sieve tubes, the sieve-plate pores providing a high degree of protoplasmic continuity between the superimposed cells (Figs. 6.1–6.3). The protoplasts of dicotyledonous sieve-tube members typically contain P-protein (phloem protein). In addition to the presence of sieve plates and P-protein, the sieve-tube members of dicotyledons typically are associated with companion cells, specialized parenchyma cells closely related to the sieve-tube members both ontogenetically and functionally.

Keywords

Companion Cell Sieve Tube Sieve Element Minor Vein Wall Ingrowth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arsanto J-P (1982) Observations on P-protein in dicotyledons. Substructural and developmental features. Am J Bot 69:1200–1212.CrossRefGoogle Scholar
  2. Arsanto J-P, Coulon J (1974) Détections radio-autographique et eytochimique des sites d’élaboration ou de transit des précurseurs polysaccarides pariétaux dans les cellules criblées en cours de différenciation du métaphloème caulinaire de deux Cucurbitacées voisines (Cucurbita pepo L. et Ecballium elaterium R.). C R Acad Sci Paris Ser D 278: 2775–2778.Google Scholar
  3. Arsanto J-P, Coulon J (1975) Application des méthodes cytochimique et radioautographique de détection ultrastructurale des polysaccarides à l’étude de la différenciation des plateaux criblées du métaphloème caulinaire de deux Cucurbitacées voisines (Ecballium elaterium R. et ucurbita pepo L.). C R Acad Sci Paris Ser D 280: 601–604.Google Scholar
  4. Barclay GF, Johnson RPC (1982) Analysis of particle motion in sieve tubes of Heracleum. Plant Cell Environ 5:173–178.Google Scholar
  5. Behnke H-D (1971a) Über den Feinbau verdickter (nacré) Wände und der Piastiden in den Siebröhren von Annona und Myristica. Protoplasma 72: 69–78.CrossRefGoogle Scholar
  6. Behnke H-D (1971b) The contents of the sieve-plate pores in Aristolochia. J Ultrastruct Res 36:493–498.PubMedCrossRefGoogle Scholar
  7. Behnke H-D (1974) Comparative ultrastructural investigations of angiosperm sieve elements: aspects of the origin and early development of P-protein. Z Pflanzenphysiol 74: 22–34.Google Scholar
  8. Behnke H-D (1975a) P-type sieve-element plastids: a correlative ultrastructural and ultrahisto-chemical study on the diversity and uniformity of a new reliable character in seed plant systematics. Protoplasma 83: 91–101.CrossRefGoogle Scholar
  9. Behnke H-D (1975b) Companion cells and transfer cells. In: Aronoff S, Dainty J, Gorham PR, Srivastava LM, Swanson CA (eds) Phloem transport. Plenum, New York London, pp 153–175.Google Scholar
  10. Behnke H-D (1976) Ultrastructure of sieve-element plastids in Caryophyllales (Centrospermae), evidence for the delimitation and classification of the order. Plant Syst Evol 126:31–54.CrossRefGoogle Scholar
  11. Behnke H-D (1981) Sieve-element characters. Nord J Bot 1: 381–400.CrossRefGoogle Scholar
  12. Behnke H-D (1986) Sieve element characters and the systematic position of Austrobaileya, Austrobaileyaceae — with comments to the distinction and definition of sieve cells and sieve-tube members. Plant Syst Evol 152:101–121.CrossRefGoogle Scholar
  13. Behnke H-D, Kiritsis U (1983) Ultrastructure and differentiation of sieve elements in primitive angiosperms. I. Winteraceae. Protoplasma 118:148–156.CrossRefGoogle Scholar
  14. Behnke H-D, Schulz A (1983) The development of specific sieve-element plastids in wound phloem of Coleus blumei (S-type) and Pisum sativum (P-type), regenerated from amyloplast-containing parenchyma cells. Protoplasma 114: 125–132.CrossRefGoogle Scholar
  15. Bentwood BJ, Cronshaw J (1978) Cytochemical localization of adenosine triphosphatase in the phloem of Pisum sativum and its relation to the function of transfer cells. Planta 140:111–120.CrossRefGoogle Scholar
  16. Botha CEJ, Evert RF (1981) Studies on Artemisia afra Jacq∴ the phloem in stem and leaf. Protoplasma 109: 217–231.CrossRefGoogle Scholar
  17. Browning AJ, Hall JL, Baker DA (1980) Cytochemical localization of ATPase activity in phloem tissues of Ricinus communis. Protoplasma 104: 55–65.CrossRefGoogle Scholar
  18. Catesson A-M (1973) Observations cytochimiques sur les tubes criblées de quelques angiospermes. J Microsc (Paris) 16: 95–104.Google Scholar
  19. Cateson A-M (1980) Localization of phloem oxidases. Ber Dtsch Bot Ges 93:141–152.Google Scholar
  20. Catesson A-M (1982) Cell wall architecture in the secondary sieve tubes of Acer and Populus. Ann Bot (London) 49:131–134.Google Scholar
  21. Catesson A-M, Liberman-Maxe M (1974) Les mitochondries des cellules criblées: réactions avec la 3,3’-diamino-benzidine. C R Acad Sci Paris Ser D 278: 2771–2773.Google Scholar
  22. Couot-Gastelier J (1982) Particularités fonctionnelles et infrastructurales du tissu phloémien du Vicia faba L. Beitr Biol Pflanzen 57: 257–268.Google Scholar
  23. Cronshaw J (1975a) P-proteins. In: Aronoff S, Dainty J, Gorham PR, Srivastava LM, Swanson CA (eds) Phloem transport. Plenum, New York London, pp 79–115.Google Scholar
  24. Cronshaw J (1975b) Sieve element walls. In: Aronoff S, Dainty J, Gorham PR, Srivastava LM, Swanson CA (eds) Phloem transport. Plenum, New York London, pp 129–147.Google Scholar
  25. Cronshaw J (1980) Histochemical localization of enzymes in the phloem. Ber Dtsch Bot Ges 93: 123–139.Google Scholar
  26. Cronshaw J, Anderson R (1971) Phloem differentiation in tobacco pith culture. J Ultrastruct Res 34: 244–259.PubMedCrossRefGoogle Scholar
  27. Cronshaw J, Esau K (1967) Tubular and fibrillar components of mature and differentiating sieve elements. J Cell Biol 34: 801–816.PubMedCrossRefGoogle Scholar
  28. Cronshaw J, Esau K (1968) P-protein in the phloem of Cucurbita. I. The development of P-protein bodies. J Cell Biol 38: 25–39.PubMedCrossRefGoogle Scholar
  29. Davis JD, Evert RF (1968) Seasonal development of the secondary phloem in Populus tremuloides. Bot Gaz 129:1–8.CrossRefGoogle Scholar
  30. Davis JD, Evert RF (1970) Seasonal cycle of phloem development in woody vines. Bot Gaz 131:128–138.CrossRefGoogle Scholar
  31. De Maria ME, Thaine R (1974) Strands in sieve tubes in longitudinal cryostat sections of Cucurbita pepo stems. J Exp Bot 25: 871–885.CrossRefGoogle Scholar
  32. Dempsey GP, Bullivant S, Bieleski RL (1975) The distribution of P-protein in mature sieve elements of celery. Planta 126: 45–59.CrossRefGoogle Scholar
  33. Derr WF, Evert RF (1967) The cambium and seasonal development of the phloem in Robinia pseudoacacia. Am J Bot 54:147–153.CrossRefGoogle Scholar
  34. Deshpande BP (1974a) Development of the sieve plate in Saxifraga sarmentosa L. Ann Bot (London) 38:151–158.Google Scholar
  35. Deshpande BP (1974b) On the occurrence of spiny vesicles in the phloem of Salix. Ann Bot (London) 38: 865–868.Google Scholar
  36. Deshpande BP (1975) Differentiation of the sieve plate of Cucurbita: a further view. Ann Bot (London) 39: 1015–1022.Google Scholar
  37. Deshpande BP (1976a) Observations on the fine structure of plant cell walls. II. The microfibrillar framework of the parenchymatous cell wall in Cucurbita. Ann Bot (London) 40:439–442.Google Scholar
  38. Deshpande BP (1976b) Observations on the fine structure of plant cell walls. III. The sieve-tube wall in Cucurbita. Ann Bot (London) 40: 443–446.Google Scholar
  39. Deshpande BP (1984) Distribution of P-protein in mature sieve elements of Cucurbita maxima seedlings subjected to prolonged darkness. Ann Bot (London) 53: 237–247.Google Scholar
  40. Deshpande BP, Evert RF (1970) A reevaluation of extruded nucleoli in. sieve elements. J Ultrastruct Res 33: 483–494.PubMedCrossRefGoogle Scholar
  41. Deshpande BP, Rajendrababu T (1985) Seasonal changes in the structure of the secondary phloem of Grewia tiliaefolia, a deciduous tree from India. Ann Bot (London) 56: 61–77.Google Scholar
  42. Dute RR, Sharkey CL (1985) Phloem of primitive angiosperms. III. Phloem of petioles of Drimys granadensis (Winteraceae). Proc Iowa Acad Sci 92:104–110.Google Scholar
  43. Esau K (1948) Phloem structure in the grapevine, and its seasonal changes. Hilgardia 18:217–296.Google Scholar
  44. Esau K (1969) The phloem. In: Zimmermann W, Ozenda P, Wulff HD (eds) Encyclopedia of plant anatomy, vol 5, pt 2. Borntraeger, Berlin Stuttgart, 505 pp.Google Scholar
  45. Esau K (1971) Development of P-protein in sieve elements of Mimosa pudica. Protoplasma 73:225–238.CrossRefGoogle Scholar
  46. Esau K (1975) The phloem of Nelumbo nucifera Gaertn. Ann Bot (London) 39: 901–913.Google Scholar
  47. Esau K (1978a) The protein inclusions in sieve elements of cotton (Gossypium hirsutum L.). J Ultrastruct Res 63: 224–235.PubMedCrossRefGoogle Scholar
  48. Esau K (1978b) Developmental features of the primary phloem in Phaseolus vulgaris L. Ann Bot (London) 42:1–13.Google Scholar
  49. Esau K, Charvat ID (1975) An ultrastructural study of acid phosphatase localization in cells of Phaseolus vulgaris phloem by the use of the azo dye method. Tissue Cell 7: 619–630.PubMedCrossRefGoogle Scholar
  50. Esau K, Cheadle VI (1958) Wall thickening in sieve elements. Proc Natl Acad Sci USA 44:546–553.PubMedCrossRefGoogle Scholar
  51. Esau K, Cronshaw J (1968) Plastids and mitochondria in the phloem of Curcurbita. Can J Bot 46: 877–880.CrossRefGoogle Scholar
  52. Esau K, Gill RH (1971) Aggregation of endoplasmic reticulum and its relation to the nucleus in a differentiating sieve element. J Ultrastruct Res 34: 144–158.PubMedCrossRefGoogle Scholar
  53. Esau K, Gill RH (1972) Nucleus and endoplasmic reticulum in differentiating root protophloem of Nicotiana tabacum. J Ultrastruct Res 41:160–175.PubMedCrossRefGoogle Scholar
  54. Esau K, Hoefert LL (1971) Composition and fine structure of minor veins in Tetragonia leaf. Protoplasma 72: 237–253.CrossRefGoogle Scholar
  55. Esau K, Hoefert LL (1980) Endoplasmic reticulum and its relation to microtubules in sieve elements of sugarbeet and spinach. J Ultrastruct Res 71: 249–257.PubMedCrossRefGoogle Scholar
  56. Esau K, Magyarosy AC (1979a) A crystalline inclusion in sieve element nuclei of Amsinckia. I. The inclusion in differentiating cells. J Cell Sci 38:1–10.PubMedGoogle Scholar
  57. Esau K, Magyarosy AC (1979b) A crystalline inclusion in sieve element nuclei of Amsinckia. II. The inclusion in maturing cells. J Cell Sci 38:11–22.PubMedGoogle Scholar
  58. Esau K, Thorsch J (1982) Nuclear crystalloids in sieve elements of species of Echium (Boragniaceae). J Cell Sci 54:149–160.Google Scholar
  59. Esau K, Thorsch J (1984) The sieve plate of Echium (Boraginaceae): developmental aspects and response of P-protein to protein digestion. J Ultrastruct Res 86: 31–45.CrossRefGoogle Scholar
  60. Esau K, Thorsch J (1985) Sieve plate pores and plasmodesmata, the communication channels of the symplast: ultrastructural aspects and developmental relations. Am J Bot 72:1641–1653.CrossRefGoogle Scholar
  61. Eschrich W (1975) Sealing systems in phloem. In: Zimmermann MH, Milburn JA (eds) Transport in plants. I. Phloem transport. Encyclopedia of plant physiology, NS vol 1. Springer, Berlin Heidelberg New York, pp 39–56.Google Scholar
  62. Evert RF (1960) Phloem structure in Pyrus communis L. and its seasonal changes. Univ Cal Berkeley Publ Bot 32:127–194.Google Scholar
  63. Evert RF (1962) Some aspects of phloem development in Tilia americana. Am J Bot 49: 659.Google Scholar
  64. Evert RF (1963a) Ontogeny and structure of the secondary phloem in Pyrus malus. Am J Bot 50: 8–37.CrossRefGoogle Scholar
  65. Evert RF (1963b) Sclerified companion cells in Tilia americana. Bot Gaz 124: 262–264.CrossRefGoogle Scholar
  66. Evert RF (1963c) The cambium and seasonal development of the phloem in Pyrus malus. Am J Bot 50:149–159.CrossRefGoogle Scholar
  67. Evert RF (1977) Phloem structure and histochemistry. Annu Rev Plant Physiol 28:199–222.CrossRefGoogle Scholar
  68. Evert RF (1982) Sieve-tube structure in relation to function. BioScience 32: 789–795.CrossRefGoogle Scholar
  69. Evert RF (1984) Comparative structure of phloem. In: White RA, Dickison WC (eds) Contemporary problems in plant anatomy. Academic Press, Orlando, pp 145–234.Google Scholar
  70. Evert RF, Derr WF (1964) Callose substance in sieve elements. Am J Bot 51: 552–559.CrossRefGoogle Scholar
  71. Evert RF, Deshpande BP (1969) Electron microscope investigation of sieve-element ontogeny and structure in Ulmus americana. Protoplasma 68: 403–432.CrossRefGoogle Scholar
  72. Evert RF, Mierzwa RJ (1986) Pathway(s) of assimilate movement from mesophyll cells to sieve tubes in the Beta vulgaris leaf. In: Cronshaw J, Lucas WJ, Giaquinta RT (eds) Plant biology, vol 1. Phloem transport. Liss, New York, pp 419–432.Google Scholar
  73. Evert RF, Tucker CM, Davis JD, Deshpande BP (1969) Light microscope investigation of sieve-element ontogeny and structure in Ulmus americana. Am J Bot 56: 999–1017.CrossRefGoogle Scholar
  74. Evert RF, Davis JD, Tucker CM, Alfieri FJ (1970) On the occurrence of nuclei in mature sieve elements. Planta 95: 281–296.CrossRefGoogle Scholar
  75. Evert RF, Deshpande BP, Eichhorn SE (1971) Lateral sieve-area pores in woody dicotyledons. Can J Bot 49:1509–1515.CrossRefGoogle Scholar
  76. Evert RF, Eschrich W, Eichhorn SE (1973) P-protein distribution in mature sieve elements of Cucurbita maxima. Planta 109: 193–210.CrossRefGoogle Scholar
  77. Fellows RJ, Geiger DR (1974) Structural and physiological changes in sugar beet leaves during sink to source conversion. Plant Physiol 54: 877–885.PubMedCrossRefGoogle Scholar
  78. Fensom DS (1972) A theory of translocation in phloem of Heracleum by contractile protein microfibrillar material. Can J Bot 50: 479–497.CrossRefGoogle Scholar
  79. Fensom DS, Williams EJ (1974) On Allen’s suggestion for long-distance translocation in phloem of plants. Nature (London) 250; 490–492.CrossRefGoogle Scholar
  80. Fischer A (1884) Untersuchungen über das Siebröhren-System der Cucurbitaceen. Borntraeger, Berlin.Google Scholar
  81. Fisher DB (1975) Structure of functional soybean sieve elements. Plant Physiol 56: 555–569.PubMedCrossRefGoogle Scholar
  82. Fisher DG (1986) Ultrastructure, plasmodesmatal frequency, and solute concentration in green areas of variegated Coleus blumei Benth. leaves. Planta 169:141–152.CrossRefGoogle Scholar
  83. Fisher DG, Evert RF (1982) Studies on the leaf of Amaranthus retroflexus (Amaranthaceae): ultrastructure, plasmodesmatal frequency, and solute concentration in relation to phloem loading. Planta 155: 377–387.CrossRefGoogle Scholar
  84. Friis J, Dute RR (1983) Phloem of primitive angiosperms. II. P-protein in selected species of the Ranalean complex. Proc Iowa Acad Sci 90: 78–84.Google Scholar
  85. Gamalei YV (1985) Characteristics of phloem loading in woody and herbaceous plants. Sov Plant Physiol 32: 656–665.Google Scholar
  86. Gamalei YY, Pakhomova MV (1983a) Minor veins of dicotyledonous leaves. I. Structure and typology. Bot Zh Leningrad 68: 287–301.Google Scholar
  87. Gamalei YV, Pakhomova MV (1983b) Minor veins of dicotyledonous leaves. II. Taxonomical distribution of the main types. Bot Zh Leningrad 68: 428–438.Google Scholar
  88. Ghouse AKM, Hashmi S (1979) Longevity of phloem in Polyalthia longifolia Benth. & Hook. Bull Torrey Bot Club 106:182–184.CrossRefGoogle Scholar
  89. Ghouse AKM, Hashmi S (1980a) Seasonal production of secondary phloem and its longevity in Mimusops elengi L. Flora 170: 175–179.Google Scholar
  90. Ghouse AKM, Hashmi S (1980b) Longevity of secondary phloem in Delonix regia Rafin. Proc Indian Acad Sci 89: 67–72.CrossRefGoogle Scholar
  91. Giaquinta R (1980) Mechanism and control of phloem loading of sucrose. Ber Dtsch Bot Ges 93: 187–201.Google Scholar
  92. Giaquinta RT, Geiger DR (1973) Mechanism of inhibition of translocation by localized chilling. Plant Physiol 51: 372–377.PubMedCrossRefGoogle Scholar
  93. Gilder J, Cronshaw J (1973a) The distribution of adenosine triphosphatase activity in differentiating and mature phloem cells of Nicotiana tabacum and its relationship to phloem transport. J Ultrastruct Res 44: 388–404.PubMedCrossRefGoogle Scholar
  94. Gilder J, Cronshaw J (1973b) Adenosine triphosphatase in the phloem of Cucurbita. Planta 110:189–204.CrossRefGoogle Scholar
  95. Gilder J, Cronshaw J (1974) A biochemical and cytochemical study of adenosine triphosphatase activity in the phloem of Nicotiana tabacum. J Cell Biol 60: 221–235.PubMedCrossRefGoogle Scholar
  96. Gilliland MG, van Staden J, Bruton AG (1984) Studies on the translocation system of guayule (Parthenium argentatum Gray). Protoplasma 122:169–177.CrossRefGoogle Scholar
  97. Goff CW (1973) Localization of nucleoside diphosphatase in the onion root tip. Protoplasma 78:397–416.PubMedCrossRefGoogle Scholar
  98. Gunning BES (1976) The role of plasmodesmata in short distance transport to and from the phloem. In: Gunning BES, Robards AW (eds) Intercellular communication in plants: studies on plasmodesmata. Springer, Berlin Heidelberg New York, pp 203–227.CrossRefGoogle Scholar
  99. Gunning BES, Pate JS, Briarty LG (1968) Specialized “transfer cells” in minor veins of leaves and their possible significance in phloem translocation. J Cell Biol 37: C7–C12.PubMedCrossRefGoogle Scholar
  100. Gunning BES, Pate JS, Minchin FR, Marks I (1974) Quantitative aspects of transfer cell structure in relation to vein loading in leaves and solute transport in legume nodules. Symp Soc Exp Biol 28: 87–126.PubMedGoogle Scholar
  101. Hartig T (1854) Über die Querscheidewände zwischen den einzelnen Gliedern der Siebröhren in Cucurbita pepo. Bot Z 12: 51–54.Google Scholar
  102. Hoefert LL (1979) Ultrastructure of devoloping sieve elements in Thlaspi arvense L. I. The immature state. Am J Bot 66: 925–932.CrossRefGoogle Scholar
  103. Hoefert LL (1980) Ultrastructure of developing sieve elements in Thlaspi arvense L. II. Maturation. Am J Bot 67:194–201.CrossRefGoogle Scholar
  104. Holdheide W (1951) Anatomie mitteleuropäischer Gehölzrinden. In: Freund H (ed) Handbuch der Mikroskopie in der Technik, vol 5, pt 1. Umschau, Frankfurt am Main, pp 193–367.Google Scholar
  105. Ilker R, Currier HB (1975) Histochemical studies of an inclusion body and P-protein in phloem of Xylosma congestum. Protoplasma 85:127–132.CrossRefGoogle Scholar
  106. Jarvis P, Thaine R, Leonard JW (1973) Structures in sieve elements cut with a cryostat following different rates of freezing. J Exp Bot 24: 905–919.CrossRefGoogle Scholar
  107. Johnson RPC, Freundlich A, Barclay GF (1976) Transcellular strands in sieve tubes; what are they? J Exp Bot 27: 1117–1136.CrossRefGoogle Scholar
  108. Jørgensen LB, Møller JD, Wagner P (1975) Secondary phloem of Trochodendron aralioides. Bot Tidsskr 69: 217–238.Google Scholar
  109. Kallarackal J, Milburn JA (1983) Studies on the phloem sealing mechanism in Ricinus fruit stalks. Aust J Plant Physiol 10: 561–568.CrossRefGoogle Scholar
  110. Kollmann R (1973) Cytologie des Phloems. In: Hirsch GC, Ruska H, Sitte P (eds) Grundlagen der Cytologie. Fischer, Jena, pp 479–505.Google Scholar
  111. Kollmann R (1980) Fine structural and biochemical characterization of phloem proteins. Can J Bot 58: 802–806.CrossRefGoogle Scholar
  112. Laflèche D (1966) Ultrastructure et cytochimie des inclusions flagellées des cellules criblées de Phaseolus vulgaris. J Microsc (Paris) 5: 493–510.Google Scholar
  113. Lawton DM (1978a) P-protein crystals do not disperse in uninjured sieve elements in roots of runner bean (Phaseolus multiflorus) fixed with glutaraldehyde. Ann Bot (London) 42:353–361.Google Scholar
  114. Lawton DM (1978b) Ultrastructural comparison of the tailed and tailless P-protein crystals respectively of runner bean (Phaseolus multiflorus) and garden pea (Pisum sativum) with tilting stage electron microscopy. Protoplasma 97:1–11.CrossRefGoogle Scholar
  115. Lawton DM, Johnson RPC (1976) A superhelical model for the ultrastructure of “P-protein tubules” in sieve elements of Nymphoides pettata. Cytobiologie 14:1–17.Google Scholar
  116. Lawton DM, Newman YM (1979) Ultrastructure of phloem in young runner-bean stem: discovery, in old sieve elements on the brink of collapse, of parietal bundles of P-protein tubules linked to the plasmalemma. New Phytol 82: 213–222.CrossRefGoogle Scholar
  117. Lawton JR (1976) Seasonal variation in the secondary phloem from the main trunks of willow and sycamore trees. New Phytol 77: 761–771.CrossRefGoogle Scholar
  118. Lawton JR (1977) An investigation of the functional phloem in willow. New Phytol 78:189–192.CrossRefGoogle Scholar
  119. Lawton JR, Lawton JRS (1971) Seasonal variations in the secondary phloem of some forest trees from Nigeria. New Phytol 70:187–196.CrossRefGoogle Scholar
  120. Lee DR, Arnold DC, Fensom DS (1971) Some microscopical observations of functioning sieve tubes of Heracleum using Nomarski optics. J Exp Bot 22: 25–38.CrossRefGoogle Scholar
  121. Lehmann J (1979) Nachweis von ATP und ATP-ase in den Siebröhren von Cucurbita pepo. Z Pflanzenphysiol 94: 331–338.Google Scholar
  122. Lu C-Y, Chiang S-HT (1975) Seasonal activity of the cambium in the young branch of Liquidambar formosana Hance. Taiwania 20: 32–47.Google Scholar
  123. Lucas WJ, Franceschi VR (1982) Organization of the sieve-element walls of leaf minor veins. J Ultrastruct Res 81: 209–221.PubMedCrossRefGoogle Scholar
  124. McCauley MAM (1987) Structural studies on the leaf of potato (Solarium tuberosum L.). Ph D Thesis, Univ Wisc, Madison.Google Scholar
  125. Murphy R (1986) A reanalysis of particle motion in sieve tubes of Heracleum. Ann Bot (London) 57: 667–674.Google Scholar
  126. Nehls R, Schaffner G, Kollmann R (1978) Feinstruktur des Protein-Einschlusses in den Sieb-elementen von Salix sachalinensis Fr. Schmidt. Z Pflanzenphysiol 87:113–127.Google Scholar
  127. Oberhäuser R, Kollmann R (1977) Cytochemische Charakterisierung des sogenannten “Freien Nucleolus” als Proteinkörper in den Siebelementen von Passiflora coerulea. Z Pflanzenphysiol 84: 61–75.Google Scholar
  128. Oparka KJ, Johnson RPC (1978) Endoplasmic reticulum and crystalline fibrils in the root protophloem of Nymphoides pettata. Planta 143: 21–27.CrossRefGoogle Scholar
  129. Oparka KJ, Johnson RPC, Bowen JD (1981) Sites of acid phosphatase in the differentiating root protophloem of Nymphoides pettata (S. G. Gmel.) O. Kuntze. Plant Cell Environ 4:27–35.CrossRefGoogle Scholar
  130. Palevitz BA, Newcomb EH (1970) A study of sieve element starch using sequential enzymatic digestion and electron microscopy. J Cell Biol 45: 383–398.PubMedCrossRefGoogle Scholar
  131. Palevitz BA, Newcomb EH (1971) The ultrastructure and development of tubular and crystalline P-protein in the sieve elements of certain papilionaceous legumes. Protoplasma 72:399–426.CrossRefGoogle Scholar
  132. Parthasarathy MV, Mühlethaler K (1969) Ultrastructure of protein tubules in differentiating sieve elements. Cytobiologie 7: 17–36.Google Scholar
  133. Parthasarathy MV, Pesacreta TC (1980) Microfilaments in plant vascular cells. Can J Bot 58:807–815.CrossRefGoogle Scholar
  134. Pate JS, Gunning BES (1969) Vascular transfer cells in angiosperm leaves. A taxonomic and morphological survey. Protoplasma 68:135–156.CrossRefGoogle Scholar
  135. Pate JS, Gunning BES (1972) Transfer cells. Annu Rev Plant Physiol 23:173–196.CrossRefGoogle Scholar
  136. Pickett-Heaps JD (1967) The use of radioautography for investigating wall secretion in plant cells. Protoplasma 64: 49–66.CrossRefGoogle Scholar
  137. Read SM, Northcote DH (1983a) Subunit structure and interactions of the phloem proteins of Cucurbita maxima (pumpkin). Eur J Biochem 134: 561–569.PubMedCrossRefGoogle Scholar
  138. Read SM, Northcote DH (1983b) Chemical and immunological similarities between the phloem proteins of three genera of the Cucurbitaceae. Planta 158: 119–127.CrossRefGoogle Scholar
  139. Robidoux J, Sandborn EB, Fensom DS, Cameron ML (1973) Plasmatic filaments and particles in mature sieve elements of Heracleum sphondylium under the electron microscope. J Exp Bot 24: 349–359.CrossRefGoogle Scholar
  140. Roland J-C, Sandoz D (1969) Détection cytochimique des sites de formation des polysaccharides pré-membranaires dans les cellules végétales. J Microsc (Paris) 8: 263–268.Google Scholar
  141. Russin WA, Evert RF (1985) Studies on the leaf of Populus deltoides (Salicaceae): ultrastructure, plasmodesmatal frequency, and solute concentrations. Am J Bot 72: 1232–1247.CrossRefGoogle Scholar
  142. Sabnis DD, Hart JW (1979) Heterogeneitiy in phloem protein complements from different species. Consequences to hypotheses concerned with P-protein function. Planta 145:459–466.CrossRefGoogle Scholar
  143. Schaad NW, Wilson EE (1970) Structure and seasonal development of secondary phloem of Juglans regia. Can J Bot 48:1049–1053.CrossRefGoogle Scholar
  144. Sjolund RD, Shih CY (1983a) Freeze-fracture analysis of phloem structure in plant tissue cultures. I. The sieve element reticulum. J Ultrastruct Res 82:111–121.PubMedCrossRefGoogle Scholar
  145. Sjolund RD, Shih CY (1983b) Freeze-fracture analysis of phloem structure in plant tissue cultures. II. The sieve element plasma membrane. J Ultrastruct Res 82:189–197.PubMedCrossRefGoogle Scholar
  146. Sjolund RD, Shih CY, Jensen KG (1983) Freeze-fracture analysis of phloem structure in plant tissue cultures. III. P-protein, sieve area pores, and wounding. J Ultrastruct Res 82:198–211.PubMedCrossRefGoogle Scholar
  147. Spanner DC (1978a) Sieve-plate pores, open or occluded? A critical review. Plant Cell Environ 1:7–20.CrossRefGoogle Scholar
  148. Spanner DC (1978b) The Münch hypothesis, freeze-substitution and the structure of sieve-plate pores. Ann Bot (London) 42: 485–488.Google Scholar
  149. Spanner DC, Moattari F (1978) The significance of P-protein and endoplasmic reticulum in sieve elements in light of evolutionary origins. Ann Bot (London) 42:1469–1472.Google Scholar
  150. Srivastava LM (1970) The secondary phloem of Austrobaileya scandens. Can J Bot 48: 341–359.CrossRefGoogle Scholar
  151. Thaine R, Probine MC, Dyer PY (1967) The existence of transcellular strands in mature sieve elements. J Exp Bot 18:110–127.CrossRefGoogle Scholar
  152. Thaine R, De Maria ME, Sarisalo HIM (1975) Evidence of transcellular strands in transverse cryostat sections of Cucurbita pepo sieve tubes. J Exp Bot 26: 91–101.CrossRefGoogle Scholar
  153. Thorsch J, Esau K (1981a) Changes in the endoplasmic reticulum during differentiation of a sieve element in Gossypium hirsutum. J Ultrastruct Res 74:183–194.PubMedCrossRefGoogle Scholar
  154. Thorsch J, Esau K (1981b) Nuclear degeneration and the association of endoplasmic reticulum with the nuclear envelope and microtubules in maturing sieve elements of Gossypium hirsutum. J Ultrastruct Res 74:195–204.PubMedCrossRefGoogle Scholar
  155. Thorsch J, Esau K (1981c) Ultrastructural studies of protophloem sieve elements in Gossypium hirsutum. J Ultrastruct Res 75: 339–351.PubMedCrossRefGoogle Scholar
  156. Thorsch J, Esau K (1982) Microtubules in differentiating sieve elements of Gossypium hirsutum. J Ultrastruct Res 78: 73–83.PubMedCrossRefGoogle Scholar
  157. Thorsch J, Esau K (1985) An ultrastructural study of the phloem of Drimys (Winteraceae). IAWA Bull 6: 255–268.Google Scholar
  158. Tucker CM, Evert RF (1969) Seasonal development of the secondary phloem in Acer negundo. Am J Bot 56: 275–284.CrossRefGoogle Scholar
  159. Turgeon R, Webb JA, Evert RF (1975) Ultrastructure of minor veins in Cucurbita pepo leaves. Protoplasma 83: 217–232.CrossRefGoogle Scholar
  160. Walsh MA, Popovich TM (1977) Some ultrastructural aspects of metaphloem sieve elements in the aerial stem of the holoparasitic angiosperm Epifagus virginiana (Orobanchaceae). Am J Bot 64: 326–336.CrossRefGoogle Scholar
  161. Wergin WP, Newcomb EH (1970) Formation and dispersal of crystalline P-protein in sieve elements of soybean (Glycine max L.). Protoplasma 71: 365–388.CrossRefGoogle Scholar
  162. Wergin WP, Palevitz BA, Newcomb EH (1975) Structure and development of P-protein in phloem parenchyma and companion cells of legumes. Tissue Cell 7: 227–242.PubMedCrossRefGoogle Scholar
  163. Whitmore TC (1962) Studies in systematic bark morphology. II. General features of bark construction in Dipterocarpaceae. New Phytol 61: 208–220.CrossRefGoogle Scholar
  164. Wooding FBP (1967) Fine structure and development of phloem sieve tube content. Protoplasma 64: 315–324.CrossRefGoogle Scholar
  165. Yapa PAJ, Spanner DC (1972) The effect of protease digestion (in situ) on the slime substance of mature sieve tubes. Planta 107: 89–96.CrossRefGoogle Scholar
  166. Yapa PAJ, Spanner DC (1974) Localisation of adenosine triphosphatase activity in mature sieve elements of Tetragonia. Planta 117: 321–328.CrossRefGoogle Scholar
  167. Zamski E, Zimmermann MH (1979) Sieve tube longevity in white ash Fraxinus americana) studies with a new histochemical test for the identification of sugar. Can J Bot 57: 650–656.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Ray F. Evert

There are no affiliations available

Personalised recommendations