Advertisement

Sieve Elements pp 199-217 | Cite as

Wound-Sieve Elements

  • Alexander Schulz

Abstract

The survival of higher plants is highly dependent upon the phloem path linking assimilate sources and sinks. In an individual plant the elongation, capacity and function of this path have to be finely adjusted to internal and environmental conditions. This means, at the cellular level, that the initiation of new sieve elements, the timing of their differentiation and the start of their function are subject to the changing requirements of the surrounding tissue.

Keywords

Companion Cell Sieve Tube Sieve Element Secondary Phloem Sieve Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloni R, Plotkin T (1985) Wound-induced and naturally occurring regenerative differentiation of xylem in Zea mays L. Planta 163: 126–132.CrossRefGoogle Scholar
  2. Behnke H-D (1974) Comparative ultrastructural investigations of angiosperm sieve elements: aspects of the origin and early development of P-protein. Z Pflanzenphysiol 74: 22–34.Google Scholar
  3. Behnke H-D (1981) Sieve-element characters. Nord J Bot 1: 381–400.CrossRefGoogle Scholar
  4. Behnke H-D, Pop L (1981) Sieve-element plastids and crystalline P(hloem)-protein in Leguminosae: micromorphological characters as an aid to the circumscription of the family and subfamilies. In: Polhill RM, Raven PH (eds) Advances in legume systematics. Academic Press, New York London, pp 707–715.Google Scholar
  5. Behnke H-D, Schulz A (1980) Fine structure, pattern of division, and course of wound phloem in Coleus blumei. Planta 150: 357–365.CrossRefGoogle Scholar
  6. Behnke H-D, Schulz A (1983) The development of specific sieve-element plastids in wound phloem of Coleus blumei (S-type) and Pisum sativum (P-type), regenerated from amyloplast-containing parenchyma cells. Protoplasma 144: 125–132.CrossRefGoogle Scholar
  7. Behnke H-D, Sukkri B (1971) Anastomoses in the internode of Dioscorea: their frequency, structure, and function. Z Pflanzenphysiol 66: 82–92.Google Scholar
  8. Benayoun J, Aloni R, Sachs T (1975) Regeneration around wounds and the control of vascular differentiation. Ann Bot (London) 39: 447–457.Google Scholar
  9. Bouck GB, Cronshaw J (1965) The fine structure of differentiating sieve tube elements. J Cell Biol 25: 79–95.CrossRefGoogle Scholar
  10. Esau K (1965) Plant anatomy, 2nd edn. John Wiley & Sons, New York London Sidney.Google Scholar
  11. Esau K (1969) The phloem. In: Zimmermann W, Ozenda P, Wulff HD (eds) Encyclopedia of plant anatomy, vol 5, pt 2. Borntraeger, Berlin Stuttgart, 505 pp.Google Scholar
  12. Esau K (1978) Developmental features of the primary phloem in Phaseolus vulgaris L. Ann Bot (London) 42:1–13.Google Scholar
  13. Eschrich W (1953) Beiträge zur Kenntnis der Wundsiebröhrenentwicklung bei Impatiens holsti. Planta 43: 37–74.CrossRefGoogle Scholar
  14. Hardham AR, McCully ME (1982a) Reprogramming of cells following wounding in pea (Pisum sativum L.) roots. I. Cell division and differentiation of new vascular elements. Protoplasma 112:143–151.CrossRefGoogle Scholar
  15. Hardham AR, McCully ME (1982b) Reprogramming of cells following wounding in pea (Pisum sativum L.) roots. II. The effects of caffeine and colchicine on the development of new vascular elements. Protoplasma 112: 152–166.CrossRefGoogle Scholar
  16. Hughes JE, Gunning BES (1980) Glutaraldehyde-induced deposition of callose. Can J Bot 58:250–258.CrossRefGoogle Scholar
  17. Kollmann R, Dörr I, Schulz A, Behnke H-D (1983) Funktionelle Differenzierung der Assimilatleitbahnen. Ber Dtsch Bot Ges 96: 117–132.Google Scholar
  18. Lawton DM (1978) P-protein crystals do not disperse in uninjured sieve elements in roots of runner bean (Phaseolus multiflorus) fixed with glutaraldehyde. Ann Bot (London) 42:353–361.Google Scholar
  19. Lehmann J (1973) Zur Lokalisierung der Dehydrogenasen des Energiestoffwechsels im Phloem von Cucurbita pepo L. Planta 111: 187–198.CrossRefGoogle Scholar
  20. Neeff F (1914) Über Zellumlagerung. Ein Beitrag zur experimentellen Anatomie. Z Bot 6:465–547.Google Scholar
  21. Robbertse PJ, McCully ME (1979) Regeneration of vascular tissue in wounded pea roots. Planta 145:167–173.CrossRefGoogle Scholar
  22. Schulz A (1979) Über Feinbau und Entwicklung von Wundphloem bei Coleus blumei (Lamiaceae). Staatsexamensarbeit, Fak Biol, Univ Heidelberg.Google Scholar
  23. Schulz A (1984) Licht— und elektronenmikroskopische Untersuchungen zur Entwicklung und Funktion von Wundphloem bei Pisum sativum L. (Fabaceae). Thesis, Ruprecht-Karls-Univ, Heidelberg.Google Scholar
  24. Schulz A (1986a) Wound phloem in transition to bundle phloem in primary roots of Pisum sativum L. I. Development of bundle-leaving wound-sieve tubes. Protoplasma 130: 12–26.CrossRefGoogle Scholar
  25. Schulz A (1986b) Wound phloem in transition to bundle phloem in primary roots of Pisum sativum L. II. The plasmatic contact between wound-sieve tubes and regular phloem. Protoplasma 130: 27–40.CrossRefGoogle Scholar
  26. Schulz A (1986c) Die Entwicklung von Wundleitbündeln in der Wurzelrinde von Pisum sativum L. In: Botanikertagung Hamburg, Abstracts, p 184.Google Scholar
  27. Schulz A (1987) Sieve-element differentiation and fluoresceine translocation in wound-phloem of pea roots after complete severance of the stele. Planta 170: 289–299.CrossRefGoogle Scholar
  28. Schulz A (1988) Vascular differentiation in the root cortex of peas: premitotic stages of cytoplasmic reactivation. Protoplasma 143: 176–187.CrossRefGoogle Scholar
  29. von Kaan-Albest A (1934) Anatomische und physiologische Untersuchungen über die Entstehung von Siebröhrenverbindungen. Z Bot 27: 1–94.Google Scholar
  30. Wark MC, Chambers TC (1965) Fine structure of the phloem of Pisum sativum. I. The sieve element ontogeny. Aust J Bot 13:171–183.Google Scholar
  31. Zee S-Y (1968) Ontogeny of cambium and phloem in the epicotyl of Pisum sativum. Aust J Bot 16: 419–426.CrossRefGoogle Scholar
  32. Zee S-Y, Chambers TC (1968) Fine structure of the primary root phloem of Pisum. Aust J Bot 16: 37–47.CrossRefGoogle Scholar
  33. Zee S-Y, Chambers TC (1969) Development of the secondary phloem of the primary root of Pisum. Aust J Bot 17: 119–214.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Alexander Schulz

There are no affiliations available

Personalised recommendations