Targets for Neurotransmitter Receptor Research Using PET Scan: The Neuroleptic Binding Site

  • J. C. Baron
  • J. L. Martinot
  • H. Cambon
  • J. P. Boulenger
  • M. F. Poirier
  • V. Caillard
  • J. Blin
  • J. D. Huret
  • C. Loc’h
  • B. Maziere
Conference paper
Part of the Psychopharmacology Series book series (PSYCHOPHARM, volume 7)

Abstract

Using positron emission tomography (PET) and high-affinity positron-emitting labelled radioligands administered in trace amounts, it is possible to investigate in vivo in humans a variety of brain neuroreceptors (Baron 1987). With this method one obtains a series of transaxial tomographic brain images that quantitatively represent the specifically bound radioligand an (“in vivo receptor autoradiography”). Various approaches and models have been and are still being developed in order to measure, in a quantitative or semi-quantitative way, the regional density and affinity of the neuroreceptor under study (Baron 1987).

Keywords

Dopamine Schizophrenia Prolactin Amphetamine Palmitate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnett CD, Fowler JS, Wolf AP, Shiue CY, McPherson DW (1985) 18F-N-methylspiroperidol: the radioligand of choice for PET studies of the dopamine receptor in human brain. Life Sci 36: 1359–1366Google Scholar
  2. Bagdy G, Perenyi A, Frecska E, Revai K, Pappa Z, Fekete MIK, Arato M (1985) Decrease in dopamine, its metabolites, and noradrenaline in cerebrospinal fluid of schizophrenic patients after withdrawal of long-term neuroleptic treatment. Psychopharmacology (Berlin) 85: 62–64CrossRefGoogle Scholar
  3. Baron JC (1987) In vivo study of central receptors in man using PET. In: Tucek S (ed) Synaptic transmitters and receptors. Academia, Prague, pp 80–88Google Scholar
  4. Baron JC, Mazière B, Loc’h C, Cambon H, Sgouropoulos P, Bonnet AM, Agid Y (1986) Loss of striatal 76Br-bromospiperone binding sites demonstrated by positron tomography in progressive supranuclear palsy. J Cereb Blood Flow Metab 6: 131–136PubMedCrossRefGoogle Scholar
  5. Barone D, Luzzani F, Assandri A, Galliani G, Mennini T, Garattini S (1985) In vivo stereo-specific 3H-spiperone binding in rat brain: characteristics, regional distribution, kinetics and pharmacological properties. Eur J Pharmacol 116: 63–74PubMedCrossRefGoogle Scholar
  6. Blin J, Pappata S, Kiyosawa M, Crouzel C, Baron JC (1988) 18F-setoperone: a new high affinity ligand for in vivo study of the serotonin-2 receptors in baboon brain. Eur J Pharmacol 147: 73–82Google Scholar
  7. Cambon H, Baron JC, Boulenger JP, Loc’h C, Zarifian E, Maziere B (1987) In vivo assay for neuroleptic receptor binding in the striatum: positron tomography in humans. Br J Psychiatry 151: 824–830PubMedCrossRefGoogle Scholar
  8. Campbell A, Baldessarini RJ, Teicher MH, Kula NS (1985) Prolonged antidopaminergic actions of single doses of butyrophenones in the rat. Psychopharmacology (Berlin) 87: 161–166CrossRefGoogle Scholar
  9. Creese I, Burt DR, Snyder SH (1976) Dopamine receptors and average clinical doses. Science 194: 546PubMedCrossRefGoogle Scholar
  10. Dahl SG, Hals PA (1987) Pharmacokinetic and pharmacodynamic factors causing variability in response to neuroleptic drugs. In: Dahl SG, Gram LF, Paul SM, Potter WZ (eds) Clinical pharmacology in psychiatry. Springer, Berlin Heidelberg New York, pp 266–274Google Scholar
  11. Davis JM, Andriukaitis S (1986) The natural course of schizophrenia and effective maintenance drug treatment. J Clin Psychopharmacol 6: 25–105CrossRefGoogle Scholar
  12. Davis JM, Vogel C, Gibbons R, Parkovic I, Zhang M (1984) Pharmacoendocrinology of schizophrenia. In: Brown GM et al. (eds) Neuroendocrinology and psychiatric disorder. Raven, New York, pp 29–53Google Scholar
  13. Farde L, Hall H, Ehrin E, Sedvall G (1986) Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 231: 258–261PubMedCrossRefGoogle Scholar
  14. Farde L, Wiesel FA, Hall H, et al. (1987a) No D2 receptor increase in PET study of schizophrenia. Arch Gen Psychiatry 44: 671PubMedGoogle Scholar
  15. Farde L, Halldin C, Stone-Elander S, Sedvall G (1987b) PET analysis of human dopamine receptor subtypes using 11C-SCH 23390 and 11C-raclopride. Psychopharmacology (Berlin) 92: 278–284CrossRefGoogle Scholar
  16. Farde L, Wiesel FA, Halldin C, Sedvall G (1988) Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry 45: 71–76PubMedGoogle Scholar
  17. Ferrero P, Vaccarino F, Guidotti A, Costa E, di Chiro G (1983) In vivo modulation of brain dopamine recognition sites: a possible model for emission computed tomography studies. Neuropharmacology 22: 791–795PubMedCrossRefGoogle Scholar
  18. Forrest IS, Fox J, Green DE, Melikian AP, Serra MT (1974) Total excretion of 3H-chlorpromazine in chronically dosed animals: balance sheet. In: Forrest IS, Carz CJ, Usdin E (eds) The phenotiazines and structurally related drugs. Raven, New York, pp 347–356Google Scholar
  19. Frost JJ, Wagner HN, Dannais RF, et al. (1985) Imaging opiate receptors in the human brain by positron tomography. J Comput Assist Tomogr 9: 231–236PubMedCrossRefGoogle Scholar
  20. Gunnet JW, Moore KE (1988) Neuroleptics and neuroendocrine function. Annu Rev Pharmacol Toxicol 28: 347–366PubMedCrossRefGoogle Scholar
  21. Hägglund J, Aquilonius SM, Eckernas SA, Hartrig P, Lundquist H, Gullberg P, Langstrom B (1987) Dopamine receptor properties in Parkinson’s disease and Huntington’s chorea evaluated by positron emission tomography using 11C-iV-methyl-spiperone. Acta Neurol Scand 75: 87–94PubMedCrossRefGoogle Scholar
  22. Hershon HI, Kennedy PF, McGuire RJ (1972) Persistence of extra-pyramidal disorders and psychiatric relapse after withdrawal of long-term phenothiazine therapy. Br J Psychiatry 120: 41–50PubMedCrossRefGoogle Scholar
  23. Jenner P, Marsden CD (1983) Neuroleptics and tardive dyskinesia. In: Coyle JT, Enna SJ (eds) Neuroleptics neurochemical, behavioral and clinical perspectives. Raven, New York, pp 223–253Google Scholar
  24. Jørgensen A (1986) Metabolism and pharmacokinetics of antipsychotic drugs. Prog Drug Metab 9: 111–174Google Scholar
  25. Kashihara K, Sato M, Fujiwara Y, Harada T, Ogawa T, Otsuki S (1986) Effects of intermittent and continuous haloperidol administration on the dopaminergic system in the rat brain. Biol Psychiatry 21: 650–656PubMedCrossRefGoogle Scholar
  26. Krska J, Sampath G, Shah A, Sori SD (1986) Radio-receptor assay of serum neuroleptic levels in psychiatric patients. Br J Psychiatry 148: 187–193PubMedCrossRefGoogle Scholar
  27. Laduron PM, Janssen PFM, Leysen JE (1978) Characterization of specific in vivo binding of neuroleptic drugs in rat brain. Life Sci 23: 581–586PubMedCrossRefGoogle Scholar
  28. Leysen JE (1984) Receptors for neuroleptic drugs. In: Burrows GD, Werry JS (eds) Advances in human psychopharmacology, vol 3. J AI, Greenvich, pp 315–356Google Scholar
  29. Mahju MA, Maickel RP (1969) Accumulation of phenothiazine tranquillizers in rat brain and plasma after repeated dosage. Biochem Pharmacol 18: 2701–2710PubMedCrossRefGoogle Scholar
  30. Marsden CD, Tarsy D, Baldessarini RJ (1975) Spontaneous and drug-induced movement disorders in psychotic patients. In: Benson DF, Blumer D (eds) Psychiatric aspects of neurologic disease. Grune and Stratton, New York, pp 219–265Google Scholar
  31. Striatal D2 dopaminergic receptors assessed in vivo by positron emission tomography and 76Br-bromospiperone in untreated schizophrenics. Amer J Psychiat (in press)Google Scholar
  32. Maziere B, Loc’h C, Baron JC, Sgouropoulos P, Duquesnoy N, d’Antona R, Cambon H (1985) In vivo quantitative imaging of dopamine receptors in human brain using positron emission tomography and 76Br-bromospiperone. Eur J Pharmacol 114: 267–272PubMedCrossRefGoogle Scholar
  33. Meitzer HY, Kane JM, Kolakowska T (1983) Plasma levels of neuroleptics, prolactin levels and clinical response. In: Coyle JT, Enna SJ (eds) Neuroleptics: neurochemical, behavioral and clinical perspectives. Raven, New York, pp 255–279Google Scholar
  34. Midha KK, Hawes EM, Hubbard JW, Korchinski ED, McKay G (1987) The search for correlations between neuroleptic plasma levels and clinical outcome: a critical review. In: Meitzer HY (ed) Psychopharmacology: the third generation of progress. Raven, New York, pp 1341–1351Google Scholar
  35. Ortiz A, Gershon S (1987) Plasma levels of neuroleptics in clinical treatment of acute psychotic states. ISI Atlas of Science (pharmacology) 1: 60–62Google Scholar
  36. Owen F, Poulter M, Mashal RD, Crow TJ, Veall N, Zanelli GD (1983) 77Br-p-bromos-Google Scholar
  37. piperone: a ligand for in vivo labelling of dopamine receptors. Life Sci 33: 765–768Google Scholar
  38. Pappata S, Samson Y, Chavoix C, et al. (1988) Regional specific binding of 11C-Ro1S 1788 to central type benzodiazepine receptors in human brain: quantitative evaluation by PET. J Cereb Blood Flow Metab 8: 304–313CrossRefGoogle Scholar
  39. Perlmutter JS, Kilboura MR, Raichle ME, Welch MT (1987) PET demonstration of up-regulation of radioligand-receptor binding in human MPTP-induced parkinsonism. J Cereb Blood Flow Metab [Suppl 1] 7: 371Google Scholar
  40. Persson A, Stone-Elander S, Pauli S, Sedvall G (1987) Saturation analysis of benzodiazepine receptor binding in the brain of healthy human subjects using 11C-RO 15 1788 and PET. J Cereb Blood Flow Metab [Suppl 1] 7: 344Google Scholar
  41. Saelens JK, Simke JP, Neale SE, Weeks BJ, Selwyn M (1980) Effects of haloperidol and damphetamine on in vivo 3H-spiroperidol binding in the rat forebrain. Arch Int. Pharmacodyn Ther 246: 98–107PubMedGoogle Scholar
  42. Samson Y, Hantraye P, Baron JC, Soussaline F, Comar D, Maziere M (1985) Kinetics and displacement of 11C-RO 15-1788, a benzodiazepine antagonist, studied in human brain in vivo by positron tomography. Eur J Pharmacol 110: 147–250CrossRefGoogle Scholar
  43. Shinotoh H, Yamasaki T, Inoue U, et al. (1986) Visualization of specific binding of benzodiazepine in human brain. J Nucl Med 77: 1593–1599Google Scholar
  44. Wagner HN Jr, Burns HD, Dannais RF, Wong DF, Langstrom B, Duelfer T, Frost JJ, et al. (1983) Imaging dopamine receptors in the human brain by positron tomography. Science 221: 1264–1266PubMedCrossRefGoogle Scholar
  45. Wong DF, Wagner HN Jr, Dannals RF, Links JM, Frost JJ, Ravert HT, Wilson AA, et al. (1984) Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science 226: 1393–1396PubMedCrossRefGoogle Scholar
  46. Wong DF, Wagner HN, Tune LE, et al. (1986) Positron emission tomography reveals elevated D2. Dopamine receptors in drug-naive schizophrenics. Science 234: 1558–1563PubMedCrossRefGoogle Scholar
  47. Wong DF, Lever JR, Hartig PR, et al. (1987) Localization of serotonin 5HT2 receptors in living human brain by PET using N-11 C-methyl-2-Br-LSD. Synapse 1: 393–398PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. C. Baron
    • 1
    • 2
  • J. L. Martinot
    • 1
  • H. Cambon
    • 1
  • J. P. Boulenger
    • 2
  • M. F. Poirier
    • 3
  • V. Caillard
    • 2
  • J. Blin
    • 1
  • J. D. Huret
    • 1
  • C. Loc’h
    • 1
  • B. Maziere
    • 1
  1. 1.Département de BiologieService Hospitalier Frédéric Joliot, CEAOrsayFrance
  2. 2.Centre Psychiatrique Esquirol and INSERMCaenFrance
  3. 3.Service de Thérapeutique et de Santé MentaleParisFrance

Personalised recommendations