Solute Translocation Across the Lysosome Membrane: Physiology, Pathology and Pharmacology

  • J. B. Lloyd
  • T. Kooistra
  • S. Forster
  • S. J. Bird
  • G. P. Iveson
Conference paper

Abstract

Lysosomes were discovered, almost 40 years ago, because their limiting membrane is impermeable to certain low molecular weight solutes. 2-Phosphoglycerol is such a substance and, as it is also a substrate for lysosomal acid phosphatase, lysosomes incubated with 2-phosphoglycerol hydrolyse it only if their membrane is ruptured. De Duve has described in a number of publications how this initial observation led on to the characterization of lysosomes as a distinct class of subcellular organelles (see, for example, De Duve 1969 and 1979).

Keywords

Permeability Glutathione Ethyleneglycol Cysteine Lysine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous (1986) Lysosomal storage diseases. Lancet ii:898–899Google Scholar
  2. Bannai S, Kitamura E (1980) Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture. J Biol Chem 255:2372–2376PubMedGoogle Scholar
  3. Bashford CL, Alder GM, Menestrina G, Micklem KJ, Murphy JJ, Pasternak CA (1986) Membrane damage by hemolytic viruses, toxins, complements, and other cytotoxic agents. J Biol Chem 261:9300–9308PubMedGoogle Scholar
  4. Bird SJ, Forster S, Lloyd JB (1988) Mechanism of dipeptide translocation across the lysosome membrane. Biochem Soc Trans 16:42–43Google Scholar
  5. Cabantchik ZI, Silfen J, Firestone RA, Krugliak M, Nissani E, Ginsburg H (1989) Effects of lyso-somotropic detergents on the human malarial parasite Plasmodium falciparium in in vitro culture. Biochem Pharmacol (in press)Google Scholar
  6. De Duve C (1969) The lysosome in retrospect. In: Dingle JT, Fell HB (eds) Lysosomes in biology and pathology, vol 1. Elsevier North Holland Biomédical Press, Amsterdam, pp 3–40Google Scholar
  7. De Duve C (1979) The mitochondrial fraction. Biochem Soc Trans 7:823–835PubMedGoogle Scholar
  8. Diamond JM, Wright EM (1969) Biological membranes: the physical basis of ion and nonelectrolyte selectivity. Annu Rev Physiol 31:581–646PubMedCrossRefGoogle Scholar
  9. Firestone RA, Pisano JM, Bonney RJ (1979) Lysosomotropic agents. 1. Synthesis and cytotoxic action of lysosomotropic detergents. J Med Chem 22:1130–1133PubMedCrossRefGoogle Scholar
  10. Forster S, Lloyd JB (1988) Solute translocation across the mammalian lysosome membrane. Biochim Biophys Acta (in press)Google Scholar
  11. Forster S, Scarlett L, Lloyd JB (1987) The effect of lysosomotropic detergents on the permeability properties of the lysosome membrane. Biochim Biophys Acta 924:452–457PubMedCrossRefGoogle Scholar
  12. Förster S, Scarlett L, Lloyd JB (1988) Effects of a lysosomotropic detergent on cystinotic fibroblasts. Biochem Soc Trans 16:43–44Google Scholar
  13. Ginsburg H, Stein WD (1987) Biophysical analysis of novel transport pathways induced in red blood cell membranes. J Membrane Biol 96:1–10CrossRefGoogle Scholar
  14. Goldman R (1973) Dipeptide hydrolysis within intact lysosomes in vitro. FEBS Lett 33:208–212PubMedCrossRefGoogle Scholar
  15. Goldman R (1976) Ion distribution and membrane permeability in lysosomal suspensions. In: Dingle JT, Dean RT (eds) Lysosomes in biology and pathology, vol 5. Elsevier North Holland Biomédical Press, Amsterdam, pp 309–336Google Scholar
  16. Kooistra T, Lloyd JB (1985a) Degradation of insulin by human fibroblasts: effects of inhibitors of pinocytosis and lysosomal activity. Int J Biochem 17:805–811PubMedCrossRefGoogle Scholar
  17. Kooistra T, Lloyd JB (1985b) A study of the low β-galactosidase activity in cystinotic fibroblasts: effects of cysteamine. Clin Chim Acta 145:9–16PubMedCrossRefGoogle Scholar
  18. Kooistra T, Lloyd JB (1986) Pinocytosis and degradation of exogenous proteins by cystinotic fibroblasts. Biochim Biophys Acta 887:182–188PubMedCrossRefGoogle Scholar
  19. Kooistra T, Millard PC, Lloyd JB (1982) Role of thiols in degradation of proteins by cathepsins. Biochem J 204:471–477PubMedGoogle Scholar
  20. Lemons RM, Pisoni RL, Christensen HN, Thoene JG (1986) Elevated temperature produces cystine depletion in cystinotic fibroblasts. Biochim Biophys Acta 884:429–434PubMedCrossRefGoogle Scholar
  21. Lloyd JB (1971) A study of permeability of lysosomes to amino acids and peptides. Biochem J 121:245–248PubMedGoogle Scholar
  22. Lloyd JB (1986) Disulphide reduction in lysosomes. Biochem J 237:271–272PubMedGoogle Scholar
  23. Maguire GA, Docherty K, Hales CN (1983) Sugar transport in rat liver lysosomes. Biochem J 212:211–218PubMedGoogle Scholar
  24. Mego JL (1984) Role of thiols, pH and cathepsin D in the lysosomal catabolism of serum albumin. Biochem J 218:775–783PubMedGoogle Scholar
  25. Miller DK, Griffiths E, Lenard J, Firestone RA (1983) Cell killing by lysosomotropic detergents. J Cell Biol 97:1841–1851PubMedCrossRefGoogle Scholar
  26. Pisoni RL, Thoene JG, Christensen HN (1985) Detection and characterization of carrier-mediated cationic amino acid transport in lysosomes of normal and cystinotic human fibroblasts. J Biol Chem 260:4791–4798PubMedGoogle Scholar
  27. Pisoni RL, Flickinger KS, Thoene JG, Christensen HN (1987) Characterization of carrier-mediated transport systems for small neutral amino acids in human fibroblast lysosomes. J Biol Chem 262:6010–6017PubMedGoogle Scholar
  28. Reijngoud D-J, Tager JM (1977) The permeability properties of the lysosomal membrane. Biochim Biophys Acta 472:419–449PubMedGoogle Scholar
  29. Stein WD (1967) The movement of molecules across cell membranes. Academic Press, New York LondonGoogle Scholar
  30. Thoene JG, Lemons RM (1982) Cystine accumulation in cystinotic fibroblasts from free and protein-linked cystine but not cysteine. Biochem J 208:823–830PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. B. Lloyd
    • 1
  • T. Kooistra
    • 1
  • S. Forster
    • 1
  • S. J. Bird
    • 1
  • G. P. Iveson
    • 1
  1. 1.Cellular Pharmacology Research Group, Department of Biological SciencesUniversity of KeeleStaffordshireUK

Personalised recommendations