The Orthotopic Univentricular Artificial Heart

  • D. Liotta
  • J. A. Navia
  • P. del Río
  • J. B. Riebman
  • O. H. Frazier
  • O. Lima Quintana
  • C. Cabrol
  • I. Gandjbakhch
  • D. A. Cooley


Biventricular cardiac replacement with a total artificial heart (TAH) has now moved from the research laboratory into the clinical arena. Years of effort from several experimental centers have provided the foundation for the development of clinically applicable TAH systems. Experience with animal TAH implantation as well as the more recent human implant experience has delineated some problems and limitations of current devices for mechanical biventricular replacement [1–4]. Patients with small intrathoracic and intrapericardial volumes may demonstrate a poor fit of the TAH, with impingement on surrounding structures or inability to close the chest postoperatively. The problem of maintaining left and right ventricular balance plagues the TAHs designed with coupled ventricular pumping mechanisms. The level of energy consumption for a biventricular TAH also imposes some limitations on the design of a totally implantable TAH system.


Atrial Septal Defect Pulmonary Vascular Resistance Atrial Pressure Blood Pump Single Ventricle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Olsen DB, Murray KD (1984) In: Unger F (ed) Assisted circulation 2. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  2. 2.
    Kolff J, Deeb GM, Riebman J (1983) Heart Transplantation 3:60–64Google Scholar
  3. 3.
    Joyce LD, DeVries WC, Hastings WL, Olsen DB, Jarvik RK, Kolff W (1983) J Trans Am Soc Artif Intern Organs 29:81Google Scholar
  4. 4.
    Olsen DB, Taenaka Y (1986) In: Bregman D (ed) Critical care clinics: new techniques in mechanical cardiac support, vol 2, no 2. Saunders, Philadelphia, pp 195–207Google Scholar
  5. 5.
    Pierce WS, Morris L, Gardiner BN, Burney RB, Leppik I, Malmud L, Danielson GK (1965) Trans Am Soc Artif Intern Organs 11:271–276PubMedGoogle Scholar
  6. 6.
    Fontan F, Baudet E (1971) Thorax 26:240PubMedCrossRefGoogle Scholar
  7. 7.
    Kreutzer G, Galindez E, Bono H, de Palma C, Laura JP (1971) Fifth scientific meeting of the Argentinian society of cardiology, AugustGoogle Scholar
  8. 8.
    Kreutzer G, Galindez E, Bono H, de Palma C, Laura JP (1973) J Thorac Cardiovasc Surg 66:613–621PubMedGoogle Scholar
  9. 9.
    Laks H, Milliken JC, Perloff JK, Hellenbrand WE, George BL, Chin A, Di Sessa TG, Williams RG (1984) J Thorac Cardiovasc Surg 88:939–951PubMedGoogle Scholar
  10. 10.
    Sanders SP, Wright GB, Keane JF, Norwood WJ, Castaneda AR (1982) Am J Cardiol 49:1733PubMedCrossRefGoogle Scholar
  11. 11.
    Kreutzer G, Schlichter A, Michelli D, Allaria A, Suarez JC, Román M, Granja M, Rodriguez Coronel A, Berri G, Kreutzer E (1986) Latina Card Inf 2:17, 36Google Scholar
  12. 12.
    Takano H, Taenaka Y, Nakatani T, Umezu M, Matsuda T, Iwata H, Tanaka T, Noda H, Hayashi K, Takatani S, Nakamura T, Seki J, Akutsu T, Manabe H (1984) Trans Am Soc Artif Intern Organs 30:550–554PubMedGoogle Scholar
  13. 13.
    Hecks HA, Doty DB (1981) Circulation 64 [Suppl 2]:118–122Google Scholar
  14. 14.
    Baumgartner WA, Reitz BA, Oyer PE, Stinson EB, Shumway NE (1979) Curr Probi Surg 16:1CrossRefGoogle Scholar
  15. 15.
    Olsen DB, Fukumasu H, Kolff J, Nakagaki M, Finch LR, Kolff WJ (1977) Artif Organs 1(2): 92PubMedCrossRefGoogle Scholar
  16. 16.
    Guyton AC (1983) Circulatory physiology: cardiac output and its regulation. Saunders, PhiladelphiaGoogle Scholar
  17. 17.
    Fishman AP (1985) Pulmonary circulation. In: Fishman AP, Fisher AB (eds) American Physiological Society, Bethesda, sect 3, vol I, pp 93–165Google Scholar
  18. 18.
    Guyton AC, Polizo D, Armstrong GG (1954) Mean circulatory filling pressure measured immediately after cessation of heart pumping. Am J Physiol 179:261–267PubMedGoogle Scholar
  19. 19.
    Furey SA III, Zieske HA, Levy MN (1984) The essential function of the right ventricle. Am Heart J 107:404–410PubMedCrossRefGoogle Scholar
  20. 20.
    Shachar GB, Fuhrman BP, Wang Y, Lucas RY, Lock JE (1982) Rest and exercise hemodynamics after the Fontan procedure. Circulation 65:1043–1048PubMedCrossRefGoogle Scholar
  21. 21.
    Liotta DS, Cooley DA, Navia JA, Frazier OH, Jordana J, del Río PO, Lima Quintana O (1985) Orthotopic univentricular artificial heart, (abstr) Presented ESAO, SeptemberGoogle Scholar
  22. 22.
    Lloyd TC (1983) Effect of inspiration on inferior vena cava blood flow in dogs. J Appl Physiol 55(6): 1701–1708PubMedGoogle Scholar
  23. 23.
    Guyton AC, Satterfield JH, Harris JW (1952) Dynamics of central venous resistance with observations on static blood pressure. Am J Physiol 169:691–699PubMedGoogle Scholar
  24. 24.
    Burton AC (1951) On the physical equilibrium of small blood vessels. Am J Physiol 164:319–329PubMedGoogle Scholar
  25. 25.
    Mitzner W, Sylvester JT (1981) Hypoxic vasoconstriction and fluid filtration in pig lungs. J Appl Physiol 51:1065–1071PubMedGoogle Scholar
  26. 26.
    Graham R, Skoog C, Oppenheimer L, Rabson J, Goldberg HS (1982) Critical closure in the canine pulmonary vasculature. Circ Res 50:566–572PubMedGoogle Scholar
  27. 27.
    McGregor M, Sniderman A (1985) On pulmonary vascular resistance: the need for more precise definition. Am J Cardiol 55:217–221PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • D. Liotta
  • J. A. Navia
  • P. del Río
  • J. B. Riebman
  • O. H. Frazier
  • O. Lima Quintana
  • C. Cabrol
  • I. Gandjbakhch
  • D. A. Cooley

There are no affiliations available

Personalised recommendations