Skip to main content

The Cardiac K Current System

  • Conference paper

Abstract

A large number of different K channels have been described in different cell types (for a review see [1]). Also cardiac tissue has a wide variety of K channels, in addition to the well-known Na and Ca channels [2]. The cardiac K channels play an important role in establishing the shape of the electrical signal which initiates the contraction. Most of the currents carried by these channels have been identified in voltage-clamp experiments in multicellular preparations (see [3]) and single cells, based on time and voltage dependence of the current and its modulation by ions, drugs, and hormones. However, one of the main problems in the interpretation of results obtained from voltage-clamp experiments is the separation of the different ionic current components from the net current measured. Erroneous separation results in incorrect identification of these components, and hence the large number of different ionic currents in the heart, was often blamed on an inability to adequately separate the ionic currents in a tissue as complex as cardiac muscle [4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cook NS (1988) The pharmacology of potassium channels and their therapeutic potential. TIPS 9:21–28.

    PubMed  CAS  Google Scholar 

  2. Pelzer D, Trautwein W (1987) Currents through ionic channels in multicellular cardiac tissue and single heart cells. Experientia 43:1153–1162.

    Article  PubMed  CAS  Google Scholar 

  3. Carmeliet E, Vereecke J (1979) Electrogenesis of the action potential and automaticity. In: Berne RM (ed) Handbook of physiology. The cardiovascular system. American Physiological Society, Maryland, pp 269–334.

    Google Scholar 

  4. Johnson EA, Lieberman M (1971) Heart: excitation and contraction. Annu Rev Physiol 33:479–532.

    Article  PubMed  CAS  Google Scholar 

  5. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfluegers Arch 391:85–100.

    Article  CAS  Google Scholar 

  6. Sakmann B, Neher E (eds) (1983) Single channel recording. Plenum, New York.

    Google Scholar 

  7. Hutter OF, Noble D (1960) Rectifying properties of heart muscle. Nature 188:495.

    Article  PubMed  CAS  Google Scholar 

  8. Hall AE, Hutter OF, Noble D (1963) Current-voltage relations of Purkinje fibers in sodium-deficient solutions. J Physiol 166:225–240.

    PubMed  CAS  Google Scholar 

  9. Deck KA, Trautwein W (1964) Ionic currents in cardiac excitation. Pfluegers Arch 280:63–80.

    Article  CAS  Google Scholar 

  10. Noble D (1965) Electrical properties of cardiac muscle attributable to inward-going rectification. J Cell Comp Physiol 66 (Suppl 2): 127–136.

    Article  Google Scholar 

  11. McAllister RE, Noble D (1966) The time and voltage dependence of the slow outward current in cardiac Purkinje fibres. J Physiol 186:632–662.

    PubMed  CAS  Google Scholar 

  12. Dudel J, Peper K, Rüdel R, Trautwein W (1967) The potassium component of membrane current in Purkinje fibers. Pfluegers Arch 296:308–327.

    Article  CAS  Google Scholar 

  13. Weidmann S (1956) Elektrophysiologie der Herzmuskelfaser. Huber, Bern.

    Google Scholar 

  14. Isenberg G (1976) Cardiac Purkinje fibres: cesium as a tool to block inward rectifying potassium currents. Pfluegers Arch 365:99–106.

    Article  CAS  Google Scholar 

  15. Cleemann L, Morad M (1976) Extracellular potassium accumulation and inward-going potassium rectification in voltage clamped ventricular muscle. Science 191:90–92.

    Article  PubMed  CAS  Google Scholar 

  16. Cleemann L, Morad M (1979) Extracellular potassium accumulation in voltage-clamped frog ventricular mnuscle. J Physiol 286:83–111.

    PubMed  CAS  Google Scholar 

  17. Cleemann L, Morad M (1979) Potassium currents in frog ventricular muscle: evidence from voltage clamp currents and extracellular K accumulation. J Physiol 286:113–143.

    PubMed  CAS  Google Scholar 

  18. Vereecke J, Isenberg G, Carmeliet E (1980) K efflux through inward rectifying K channels in voltage clamped Purkinje fibers. Pfluegers Arch 384:207–217.

    Article  CAS  Google Scholar 

  19. DiFrancesco D, Ferroni A, Visentin S (1984) Barium-induced blockade of the inward rectifier in calf Purkinje fibres. Pfluegers Arch 402:446–453.

    Article  CAS  Google Scholar 

  20. Carmeliet E (1961) Chloride and potassium permeability in cardiac Purkinje fibres. Thesis, Presses Acad Europ, Brussels.

    Google Scholar 

  21. Haas HG, Kern R (1966) Potassium fluxes in voltage clamped Purkinje fibres. Pfluegers Arch 291:69–84.

    Article  CAS  Google Scholar 

  22. McDonald TF, Trautwein W (1978) Membrane currents in cat myocardium: separation of inward and outward components. J Physiol 274:193–216.

    PubMed  CAS  Google Scholar 

  23. McDonald TF, Trautwein W (1978) The potassium current underlying delayed rectification in cat ventricular muscle. J Physiol 274:217–246.

    PubMed  CAS  Google Scholar 

  24. Carmeliet E (1982) Induction and removal of inward-going rectification in sheep cardiac Purkinje fibres. J Physiol 327:285–308.

    PubMed  CAS  Google Scholar 

  25. Carmeliet E (1982) Inward going rectification in sheep cardiac Purkinje fibers. In: Paes de Carvalho A, Hoffman BF, Lieberman M (eds) Normal and abnormal conduction in the heart. Biophysics, physiology, pharmacology and ultrastructure. Futura, Mount Kisco, NY, pp 211–223.

    Google Scholar 

  26. Hume JR, Giles WR (1983) Ionic currents in single isolated bull-frog atrial cells. J Gen Physiol 81:153–194.

    Article  PubMed  CAS  Google Scholar 

  27. Shah AK, Cohen IS, Datyner NB (1987) Background K+ current in isolated canine cardiac Purkinje myocytes. Biophys J 52:519–525.

    Article  PubMed  CAS  Google Scholar 

  28. Harvey RD, Ten Eick RE (1988) Characterization of the inward-rectifying potassium current in cat ventricular myocytes. J Gen Physiol 91:593–615.

    Article  PubMed  CAS  Google Scholar 

  29. Pennefather P, Mulrine N, DiFrancesco D, Cohen IS (1987) Effects of external and internal K+ on the activation and deactivation of the inward rectifying background K current (iK1) in isolated canine Purkinje myocytes. Biophys J 51:256a.

    Google Scholar 

  30. Tourneur Y, Mitra R, Morad M, Rougier O (1987) Activation properties of the inward-rectifying potassium channel on mammalian heart cells. J Membr Biol 97:127–135.

    Article  PubMed  CAS  Google Scholar 

  31. Saigusa A, Matsuda H (1988) Outward currents through the inwardly rectifying potassium channels of guinea-pig ventricular cells. Jpn J Physiol 38:77–91.

    Article  PubMed  CAS  Google Scholar 

  32. Payet MD, Rousseau E, Sauvé R (1985) Single-channel analysis of a potassium inward rectifier in myocytes of newborn rat heart. J Membr Biol 86:79–88.

    Article  PubMed  CAS  Google Scholar 

  33. Biermans G, Vereecke J, Carmeliet E (1987) The mechanism of the inactivation of the inward-rectifying K current during hyperpolarizing steps in guinea-pig ventricular myocytes. Pfluegers Arch 410:604–613.

    Article  CAS  Google Scholar 

  34. Matsuda H, Saigusa A, Irisawa H (1987) Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+. Nature 325:156–159.

    Article  PubMed  CAS  Google Scholar 

  35. Trautwein W, McDonald TF (1978) Current voltage relations in ventricular muscle preparations from different species. Pfluegers Arch 374:79–89.

    Article  CAS  Google Scholar 

  36. Carmeliet E (1980) Decrease of K efflux and influx by external Cs ions in cardiac Purkinje and muscle cells. Pfluegers Arch 383:143–150.

    Article  CAS  Google Scholar 

  37. Cohen IS, Falk RT, Mulrine NK (1983) Actions of barium and rubidium on membrane currents in canine Purkinje fibres. J Physiol 338:589–612.

    PubMed  CAS  Google Scholar 

  38. Cohen IS, Mulrine NK (1986) Effects of thallium on membrane currents at diastolic potentials in canine cardiac Purkinje strands. J Physiol 370:285–298.

    PubMed  CAS  Google Scholar 

  39. Mitra R, Morad M (1987) Permeation and block of the inwardly rectifying K channel in isolated guinea pig ventricular myocytes by divalent and monovalent ions. J Physiol 382:128P.

    Google Scholar 

  40. Rougier O, Vassort G, Stämpfli R (1968) Voltage clamp experiments on frog atrial heart muscle fibres with the sucrose gap technique. Pfluegers Arch 301:91–108.

    Article  CAS  Google Scholar 

  41. Giles W, Noble SJ (1976) Changes in membrane current in bullfrog atrium produced by acetylcholine. J Physiol 261:103–123.

    PubMed  CAS  Google Scholar 

  42. Noble SJ (1976) Potassium accumulation and depletion in frog atrial muscle. J Physiol 258:579–613.

    PubMed  CAS  Google Scholar 

  43. de Hemptinne (1978) The current voltage relationship of the delayed outward current in the heart of the frog (Rana esculenta) and the tortoise (Testudo germani). Pfluegers Arch 377:235–243.

    Article  CAS  Google Scholar 

  44. Garnier D, Nargeot J, Ojeda C, Rougier O (1978) The action of acetylcholine on background conductance in frog atrial trabeculae. J Physiol 274:381–396.

    PubMed  CAS  Google Scholar 

  45. Brown H, DiFrancesco D, Noble D, Noble S (1980) The contribution of potassium accumulation to outward currents in frog atrium. J Physiol 306:127–149.

    PubMed  CAS  Google Scholar 

  46. Ojeda C, Rougier O, Tourneur Y (1981) Effects of Cs on acetylcholine induced current: Is iK1 increased by acetylcholine in frog atrium? Pfluegers Arch 391:57–59.

    Article  CAS  Google Scholar 

  47. Taupignon A, Sauvignon M, Lenfant J (1982) The effect of external potassium on the blockade of the inward-going rectification by cesium ions in the frog atrial trabeculae. J Physiol (Paris) 78:803–808.

    Google Scholar 

  48. Argibay JA, Dutey P, Ildefonse M, Ojeda C, Rougier O, Tourneur Y (1983) Block by Cs of K current iK1 and of carbachol induced K current iCch in frog atrium. Pfluegers Arch 397:295–299.

    Article  CAS  Google Scholar 

  49. Goto M, Ikeda K, Umeno T, Mitsuiye T (1985) Potassium-related membrane currents in bullfrog atrial muscle differentiated in the presence of barium. Jpn J Physiol 35:71–87.

    Article  PubMed  CAS  Google Scholar 

  50. Hume JR, Uehara A (1985) Ionic basis of the different action potential configurations of single guinea-pig atrial and ventricular myocytes. J Physiol 368:525–544.

    PubMed  CAS  Google Scholar 

  51. Simmons MA, Hartzeil HC (1987) A quantitative analysis of the acetylcholine-activated potassium current in single cells from frog atrium. Pfluegers Arch 409:454–461.

    Article  CAS  Google Scholar 

  52. Nathan RD, Kanai K, Clark RB, Giles W (1988) Selective block of calcium current by lanthanum in single bullfrog atrial cells. J Gen Physiol 91:549–572.

    Article  PubMed  CAS  Google Scholar 

  53. Giles WR, Shibata EF (1985) Voltage clamp of bull-frog cardiac pacemaker cells. A quantitative analysis of potassium currents. J Physiol 368:265–292.

    PubMed  CAS  Google Scholar 

  54. Noma A, Trautwein W (1978) Relaxation of the Ach-induced potassium current in the rabbit sinoatrial node cell. Pfluegers Arch 377:193–200.

    Article  CAS  Google Scholar 

  55. DiFrancesco D, Noma A, Trautwein W (1980) Separation of current induced by potassium accumulation from acetylcholine-induced relaxation current in the rabbit S-A node. Pfluegers Arch 387:83–90.

    Article  CAS  Google Scholar 

  56. Osterrieder W, Yang Q-F, Trautwein W (1982) Effects of barium on the membrane currents in the rabbit S-A node. Pfluegers Arch 394:78–84.

    Article  CAS  Google Scholar 

  57. Giles WR, Van Ginneken ACG (1985) A transient outward current in isolated cells from the crista terminalis of rabbit heart. J Physiol 368:243–264.

    PubMed  CAS  Google Scholar 

  58. Belardinelli L, Isenberg G (1983) Isolated atrial myocytes: adenosine and acetylcholine increase potassium conductance. Am J Physiol 244:H734–H737.

    PubMed  CAS  Google Scholar 

  59. Ijima T, Irisawa H, Kameyama M (1985) Membrane currents and their modification by acetylcholine in isolated single atrial cells of the guinea-pig. J Physiol 359:485–501.

    Google Scholar 

  60. Heidbüchel H, Vereecke J, Carmeliet E (1987) The electrophysiological effects of acetylcholine in single human atrial cells. J Mol Cell Cardiol 19:1207–1219.

    Article  PubMed  Google Scholar 

  61. Nakayama T, Kurachi Y, Noma A, Irisawa H (1984) Action potential and membrane currents of single pacemaker cells of the rabbit heart. Pfluegers Arch 402:248–257.

    Article  CAS  Google Scholar 

  62. Seyama I (1976) Characteristics of the rectifying properties of the sino-atrial node cell of the rabbit. J Physiol 255:379–397.

    PubMed  CAS  Google Scholar 

  63. Kameyama M, Kiyosue T, Soejima M (1983) Single channel analysis of the inward rectifier K current in the rabbit ventricular cells. Jpn J Physiol 33:1039–1056.

    Article  PubMed  CAS  Google Scholar 

  64. Sakmann B, Trube G (1984) Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. J Physiol 347:641–657.

    PubMed  CAS  Google Scholar 

  65. Sakmann B, Trube G (1984) Voltage-dependent inactivation of inward-rectifying singlechannel currents in the guinea-pig heart cell membrane. J Physiol 347:659–683.

    PubMed  CAS  Google Scholar 

  66. Noma A, Nakayama T, Kurachi Y, Irisawa H (1984) Resting K conductances in pacemaker and non-pacemaker heart cells of the rabbit. Jpn J Physiol 34:245–254.

    Article  PubMed  CAS  Google Scholar 

  67. Trube G, Hescheler J (1984) Inward-rectifying channels in isolated patches of the heart cell membrane: ATP-dependence and comparison with cell-attached patches. Pfluegers Arch 401:178–184.

    Article  CAS  Google Scholar 

  68. Kiyosue T, Aomine M, Arita M (1984) Lysophosphatidylcholine decreases single channel conductance of inward rectifier K channel in mammalian ventricular myocytes. Jpn J Physiol 34:369–373.

    Article  PubMed  CAS  Google Scholar 

  69. Taniguchi J, Nakamura T (1984) Transient kinetics of an inward rectifier K+ channel in the myocardial cell membrane. Jpn J Physiol 34:1123–1127.

    Article  PubMed  CAS  Google Scholar 

  70. Kurachi Y (1985) Voltage-dependent activation of the inward-rectifier potassium channel in the ventricular cell membrane of guinea-pig heart. J Physiol 366:365–385.

    PubMed  CAS  Google Scholar 

  71. Trube G (1986) Inactivation of inwardly rectifying potassium channels in the heart. Neu-rosci Lett [Suppl] 26:S8.

    Google Scholar 

  72. Carmeliet E, Biermans G, Callewaert G, Vereecke J (1987) Potassium currents in cardiac cells. Experientia 43:1175–1184.

    Article  PubMed  CAS  Google Scholar 

  73. Vandenberg CA (1987) Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions. Proc Natl Acad Sci USA 84:2560–2564.

    Article  PubMed  CAS  Google Scholar 

  74. Matsuda H (1988) Open-state substructure of inwardly rectifying potassium channels revealed by magnesium block in guinea-pig heart cells. J Physiol 397:237–258.

    PubMed  CAS  Google Scholar 

  75. Kell MJ, DeFelice LJ (1988) Surface charge near the cardiac inward-rectifier channel measured from single-channel conductance. J Membr Biol 102:1–10.

    Article  PubMed  CAS  Google Scholar 

  76. Bechern M, Glitsch HG, Pott L (1983) Properties of an inward rectifying K channel in the membrane of guinea-pig atrial cardioballs. Pfluegers Arch 399:186–193.

    Article  Google Scholar 

  77. Soejima M, Noma A (1984) Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pfluegers Arch 400:424–431.

    Article  CAS  Google Scholar 

  78. Sakmann B, Noma A, Trautwein W (1983) Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart. Nature 303:250–253.

    Article  PubMed  CAS  Google Scholar 

  79. Noble D, Tsien RW (1969) Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J Physiol 200:205–231.

    PubMed  CAS  Google Scholar 

  80. Hauswirth OD, Noble D, Tsien RW (1972) Separation of the pace-maker and plateau components of delayed rectification in cardiac Purkinje fibres. J Physiol 225:211–235.

    PubMed  CAS  Google Scholar 

  81. DiFrancesco D, McNaughton PA (1979) The effects of calcium on outward membrane currents in the cardiac Purkinje fibre. J Physiol 289:347–373.

    PubMed  CAS  Google Scholar 

  82. Katzung BG, Morgenstern JA (1977) Effects of extracellular potassium on ventricular au-tomaticity and evidence for a pacemaker current in mammalian ventricular myocardium. Circ Res 40:105–111.

    PubMed  CAS  Google Scholar 

  83. Kass RS, Tsien RW (1975) Multiple effects of calcium antagonists on plateau currents in cardiac Purkinje fibers. J Gen Physiol 66:169–192.

    Article  PubMed  CAS  Google Scholar 

  84. Kass RS, Scheuer T, Malloy KJ (1982) Block of outward current in cardiac Purkinje fibers by injection of quaternary ammonium ions. J Gen Physiol 79:1041–1063.

    Article  PubMed  CAS  Google Scholar 

  85. Kass RS, Wiegers SE (1982) The ionic basis of concentration-related effects of noradrenaline on the action potential of calf cardiac Purkinje fibres. J Physiol 322:541–558.

    PubMed  CAS  Google Scholar 

  86. Kass RS (1982) Delayed rectification in the cardiac Purkinje fiber is not activated by intracellular calcium. Biophys J 45:837–839.

    Article  Google Scholar 

  87. Kass RS (1984) Nisoldipine: a new, more selective calcium current blocker in cardiac Purkinje fibers. J Pharmacol Exp Ther 223:446–456.

    Google Scholar 

  88. Bennett PB, McKinney LC, Kass RS, Begenisich T (1985) Delayed rectification in the calf cardiac Purkinje fiber. Evidence for multiple state kinetics. Biophys J 48:553–567.

    Article  PubMed  CAS  Google Scholar 

  89. Walsh KB, Begenisich TB, Kass RS (1988) β-Adrenergic modulation in the heart. Independent regulation of K and Ca channels. Pfluegers Arch 411:232–234.

    Article  CAS  Google Scholar 

  90. Brown HF, Noble SJ (1969) Membrane currents underlying delayed rectification and pacemaker activity in frog atrial muscle. J Physiol 204:717–736.

    PubMed  CAS  Google Scholar 

  91. Brown HF, Noble SJ (1969) A quantitative analysis of the slow component of delayed rectification in frog atrium. J Physiol 204:737–747.

    PubMed  CAS  Google Scholar 

  92. de Hemptinne A (1971) Properties of the outward currents in frog atrial muscle. Pfluegers Arch 329:321–331.

    Article  Google Scholar 

  93. de Hemptinne A (1971) The frequency dependence of outward current in frog auricular fibres. An experimental and theoretical study. Pfluegers Arch 329:332–340.

    Article  Google Scholar 

  94. Ojeda C, Rougier O (1974) Kinetic analysis of the delayed outward currents in frog atrium. Existence of two types of preparation. J Physiol 239:51–73.

    PubMed  CAS  Google Scholar 

  95. Brown HF, Clark A, Noble SJ (1976) Analysis of pace-maker and repolarization currents in frog atrial muscle. J Physiol 258:547–577.

    PubMed  CAS  Google Scholar 

  96. Brown HF, Giles WR, Noble SJ (1977). Membrane currents underlying activity in frog sinus venosus. J Physiol 271:783–816.

    PubMed  CAS  Google Scholar 

  97. Brown H, DiFrancesco D (1980) Voltage-clamp investigations of membrane currents underlying pacemaker activity in rabbit sino-atrial node. J Physiol 308:331–351.

    PubMed  CAS  Google Scholar 

  98. Noma A, Irisawa H (1976) A time-and voltage-dependent potassium current in the rabbit sinotrial node cell. Pfluegers Arch 366:251–258.

    Article  CAS  Google Scholar 

  99. DiFrancesco D, Noma A, Trautwein W (1979) Kinetics and magnitude of the timedependent potassium current in the rabbit sinoatrial node. Effect of external potassium. Pfluegers Arch 381:271–279.

    Article  CAS  Google Scholar 

  100. Yanagihara K, Irisawa H (1980) Potassium current during the pacemaker depolarization in rabbit sinoatrial node cell. Pfluegers Arch 388:255–260.

    Article  CAS  Google Scholar 

  101. Kokubun S, Nishimura M, Noma A, Irisawa H (1982) Membrane currents in the rabbit atrioventricular node cell. Pfluegers Arch 393:15–22.

    Article  CAS  Google Scholar 

  102. Maughan DW (1976) Potassium movement during hyperpolarization of cardiac muscle. J Membr Biol 28:241–262.

    Article  PubMed  CAS  Google Scholar 

  103. Baumgarten CM, Isenberg G, McDonald TF, Ten Eick RE (1977) Depletion and accumulation of potassium in the extracellular clefts of cardiac Purkinje fibers during voltage clamp hyperpolarization and depolarization. J Gen Physiol 70:149–169.

    Article  PubMed  CAS  Google Scholar 

  104. Kline RP, Morad M (1978) Potassium efflux in heart muscle during activity: extracellular accumulation and its implications. J Physiol 280:537–558.

    PubMed  CAS  Google Scholar 

  105. Attwell D, Eisner D, Cohen I (1979) Voltage-clamp and tracer flux data: effects of a restricted extra-cellular space. Q Rev Biophys 12:213–261.

    Article  PubMed  CAS  Google Scholar 

  106. Cohen IS, Kline R (1982) K+ fluctuations in the extracellular spaces of cardiac muscle. Evidence from the voltage clamp and extracellular K+ selective microelectrodes. Circ Res 50:1–16.

    PubMed  CAS  Google Scholar 

  107. Jaeger JM, Gibbons WR (1985) A re-examination of late outward plateau currents of cardiac Purkinje fibers. Am J Physiol 249:H108–H121.

    PubMed  CAS  Google Scholar 

  108. Jaeger JM, Gibbons WR (1985) Slow inward current may produce many results attributed to Ix1 in cardiac Purkinje fibers. Am J Physiol 249:H122–H132.

    PubMed  CAS  Google Scholar 

  109. Gintant GA, Datyner NB, Cohen IS (1985) Gating of delayed rectification in acutely isolated canine cardiac Purkinje myocytes. Evidence for a single voltage-gated conductance. Biophys J 48:1059–1064.

    Article  PubMed  CAS  Google Scholar 

  110. Matsuura H, Ehara T, Imoto Y (1987) An analysis of the delayed outward current in single ventricular cells of the guinea-pig. Pfluegers Arch 410:596–603.

    Article  CAS  Google Scholar 

  111. Bennett PB, Begenisich TB (1987) Catecholamines modulate the delayed rectifying potassium current (IK) in guinea pig ventricular myocytes. Pfluegers Arch 410:217–219.

    Article  CAS  Google Scholar 

  112. Roden DM, Bennett PB, Snyders DJ, Baiser JR, Hondeghem LM (1988) Quinidine delays IK activation in guinea-pig ventricular myocytes. Circ Res 62:1055–1058.

    PubMed  CAS  Google Scholar 

  113. Simmons MA, Creazzo T, Hartzeil HC (1986) A time-dependent and voltage-sensitive K+ current in single cells from frog atrium. J Gen Physiol 88:739–755.

    Article  PubMed  CAS  Google Scholar 

  114. Hume JR, Giles WR, Robinson K, Shibata E, Nathan RD, Kanai K, Rasmusson R (1986) Time-and voltage-dependent K+ current in single cardiac cells isolated from bull-frog atrium. J Gen Physiol 88:777–798.

    Article  PubMed  CAS  Google Scholar 

  115. Shibata EF, Giles WR (1985) Ionic currents that generate the spontaneous diastolic depolarization in individual cardiac pacemaker cells. Proc Natl Acad Sci USA 82:7796–7800.

    Article  PubMed  CAS  Google Scholar 

  116. Noble D (1984) The surprising heart: a review of recent progress in cardiac electrophysio-logy. J Physiol 353:1–50.

    PubMed  CAS  Google Scholar 

  117. Irisawa H (1978) Comparative physiology of the cardiac pacemaker mechanism. Physiol Rev 58:461–498.

    PubMed  CAS  Google Scholar 

  118. Noma A, Morad M, Irisawa H (1983) Does the “pacemaker current” generate the diastolic depolarization in the rabbit SA node cells? Pfluegers Arch 397:190–194.

    Article  CAS  Google Scholar 

  119. Brown HF, Kimura J, Noble D, Noble SJ, Taupignon A (1984) The ionic currents underlying pacemaker activity in rabbit sino-atrial node: experimental results and computer simulations. Proc R Soc Lond [Biol] 222:329–347.

    Article  CAS  Google Scholar 

  120. Maylie J, Morad M (1984) Ionic currents responsible for the generation of pace-maker current in the rabbit sino-atrial node. J Physiol 355:215–235.

    PubMed  CAS  Google Scholar 

  121. Irisawa H, Noma A (1984) Pacemaker currents in mammalian nodal cells. J Mol Cell Cardiol 16:777–781.

    Article  PubMed  CAS  Google Scholar 

  122. Irisawa H (1985) Pacemaker mechanism of the mammalian heart. Jikeika Med J 32:157–164.

    Google Scholar 

  123. DiFrancesco D (1986) Characterization of single pacemaker channels in cardiac sino-atrial node cells. Nature 324:470–473.

    Article  PubMed  CAS  Google Scholar 

  124. Hagiwara N, Irisawa H, Kameyama M (1988) Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol 395:233–253.

    PubMed  CAS  Google Scholar 

  125. Nawrath H, Ten Eick RE, McDonald TF, Trautwein W (1977) On the mechanism underlying the action of D-600 on slow inward current and tension in mammalian myocardium. Circ Res 40:408–414.

    PubMed  CAS  Google Scholar 

  126. Tsien RW, Giles W, Greengard P (1972) Cyclic AMP mediates the effects of adrenaline on cardiac Purkinje fibres. Nature 240:181–183.

    CAS  Google Scholar 

  127. Brown HF, Noble SJ (1974) Effects of adrenaline on membrane currents underlying pacemaker activity in frog atrial muscle. J Physiol 238:51P–53P.

    PubMed  CAS  Google Scholar 

  128. Pappano AJ, Carmeliet E (1979) Epinephrine and the pacemaker mechanism at plateau potentials in sheep cardiac Purkinje fibers. Pfluegers Arch 382:17–26.

    Article  CAS  Google Scholar 

  129. Noma A, Kotake H, Irisawa H (1980) Slow inward current and its role mediating the chronotropic effect of epinephrine in the rabbit sinoatrial node. Pfluegers Arch 388:1–9.

    Article  CAS  Google Scholar 

  130. Bennett P, McKinney L, Begenisich T, Kass RS (1986) Adrenergic modulation of the delayed rectifier potassium channel in calf cardiac Purkinje fibers. Biophys J 49:839–848.

    Article  PubMed  CAS  Google Scholar 

  131. Eisner DA, Vaughan-Jones RD (1983) Do calcium-activated potassium channels exist in the heart? Cell Calcium 4:371–386.

    Article  PubMed  CAS  Google Scholar 

  132. Hume JR (1985) Do catecholamines directly modulate the delayed plateau potassium current in frog atrium? J Mol Cell Cardiol 17:813–816.

    Article  PubMed  CAS  Google Scholar 

  133. Clapham DE, DeFelice LJ (1984) Voltage activated K channels in embryonic chick heart. Biophys J 45:40–42.

    Article  PubMed  CAS  Google Scholar 

  134. Schreibmayer W, Tritthart HA, Zernig G, Piper HM (1985) Single voltage-dependent and outward rectifying K+-channels in isolated rat heart cells. Eur Biophys J 11:259–263.

    Article  PubMed  CAS  Google Scholar 

  135. Shibasaki T (1987) Conductance and kinetics of delayed rectifier channels in nodal cells of the rabbit heart. J Physiol 387:227–250.

    PubMed  CAS  Google Scholar 

  136. Dudel J, Peper K, Rüdel R, Trautwein W (1967) The dynamic chloride component of membrane current in Purkinje fibers. Pfluegers Arch 295:197–212.

    Article  CAS  Google Scholar 

  137. Hiraoka M, Hiraoka M (1975) The role of the positive dynamic current on the action potential of cardiac Purkinje fibers. Jpn J Physiol 25:705–717.

    Article  PubMed  CAS  Google Scholar 

  138. Boyett MR (1981) A study of the effect of the rate of stimulation on the transient outward current in sheep cardiac Purkinje fibres. J Physiol 319:1–22.

    PubMed  CAS  Google Scholar 

  139. Boyett MR (1981) Effect of rate-dependent changes in the transient outward current on the action potential in sheep cardiac Purkinje fibres. J Physiol 319:23–41.

    PubMed  CAS  Google Scholar 

  140. Josephson KR, Sanchez-Chapula J, Brown AM (1984) Early outward current in rat single ventricular cells. Circ Res 54:157–162.

    PubMed  CAS  Google Scholar 

  141. Peper K, Trautwein W (1968) A membrane current related to the plateau of the action potential of Purkinje fibers. Pfluegers Arch 303:108–123.

    Article  CAS  Google Scholar 

  142. Reuter H (1968) Slow inactivation of currents in cardiac Purkinje fibres. J Physiol 197:233–253.

    PubMed  CAS  Google Scholar 

  143. Fozzard HA, Hiraoka M (1973) The positive dynamic current and its inactivation properties in cardiac Purkinje fibres. J Physiol 234:569–586.

    PubMed  CAS  Google Scholar 

  144. Kenyon JL, Gibbons WR (1979) Influence of chloride, potassium and tetraethylammonium on the early outward current of sheep cardiac Purkinje fibers. J Gen Physiol 73:117–138.

    Article  PubMed  CAS  Google Scholar 

  145. Kenyon JL, Gibbons WR (1979) 4-Aminopyridine and the early outward current of sheep cardiac Purkinje fibers. J Gen Physiol 73:139–157.

    Article  PubMed  CAS  Google Scholar 

  146. Siegelbaum SA, Tsien RW, Kass RS (1977) Role of intracellular calcium in the transient outward current of calf Purkinje fibres. Nature 269:611–613.

    Article  PubMed  CAS  Google Scholar 

  147. Siegelbaum SA, Tsien RW (1980) Calcium-activated transient outward current in calf cardiac Purkinje fibres. J Physiol 299:485–506.

    PubMed  CAS  Google Scholar 

  148. Kenyon JL, Sutko JL (1987) Calcium and voltage activated plateau currents of cardiac Purkinje fibers. J Gen Physiol 89:921–958.

    Article  PubMed  CAS  Google Scholar 

  149. Coraboeuf E, Carmeliet E (1982) Existence of two transient outward currents in sheep cardiac Purkinje fibers. Pfluegers Arch 392:352–359.

    Article  CAS  Google Scholar 

  150. Escande D, Coulombe A, Faivre J-F, Deroubaix E, Coraboeuf E (1987) Two types of transient outward currents in adult human atrial cells. Am J Physiol 252:H142–H148.

    PubMed  CAS  Google Scholar 

  151. Kukushkin NI, Gainullin RZ, Sosunov EA (1983) Transient outward current and rate dependence of action potential duration in rabbit cardiac ventricular muscle. Pfluegers Arch 399:87–92.

    Article  CAS  Google Scholar 

  152. Simurda J, Simurdova M, Cupera P (1988) 4-Aminopyridine sensitive transient outward current in dog ventricular fibres. Pfluegers Arch 411:442–449.

    Article  CAS  Google Scholar 

  153. Nakayama T, Fozzard HA (1988) Adrenergic modulation of the transient outward current in isolated canine Purkinje cells. Circ Res 62:162–172.

    PubMed  CAS  Google Scholar 

  154. Connor JA, Stevens CF (1971) Voltage-clamp studies of a transient outward membrane current in gastropod neural somata. J Physiol 213:21–30.

    PubMed  CAS  Google Scholar 

  155. Callewaert G, Vereecke J, Carmeliet E (1986) Existence of a calcium-dependent potassium channel in the membrane of cow cardiac Purkinje cells. Pfluegers Arch 406:424–426.

    Article  CAS  Google Scholar 

  156. Benndorf K, Markwardt F, Nilius B (1987) Two types of transient outward currents in cardiac ventricular cells of mice. Pfluegers Arch 409:641–643.

    Article  CAS  Google Scholar 

  157. Nakayama T, Irisawa H (1985) Transient outward current carried by potassium and sodium in quiescent atrioventricular node cells of rabbits. Circ Res 57:65–73.

    PubMed  CAS  Google Scholar 

  158. Kurachi Y, Nakajima T, Sugimoto T (1986) On the mechanism of activation of muscarinic K+ channels by adenosine in isolated atrial cells: involvement of GTP-binding proteins. Pfluegers Arch 407:264–274.

    Article  CAS  Google Scholar 

  159. Kurachi Y, Nakajima T, Sugimoto T (1986) Role of intracellular Mg2+ in the activation of muscarinic K+ channel in cardiac atrial cell membrane. Pfluegers Arch 407:572–574.

    Article  CAS  Google Scholar 

  160. Kurachi Y, Nakajima T, Sugimoto T (1987) Short-term desensitization of muscarinic K+ channel current in isolated atrial myocytes and the possible role of GTP-binding proteins. Pfluegers Arch 410:227–233.

    Article  CAS  Google Scholar 

  161. Carmeliet E, Mubagwa K (1986) Changes of acetylcholine by membrane currents in rabbit cardiac Purkinje fibres. J Physiol 371:201–217.

    PubMed  CAS  Google Scholar 

  162. Carmeliet E, Mubagwa K (1986) Characterization of the acetylcholine-induced potassium current in rabbit cardiac Purkinje fibres. J Physiol 371:219–237.

    PubMed  CAS  Google Scholar 

  163. Carmeliet E, Mubagwa K (1986) Desensitization of the acetylcholine-induced increase of potassium conductance in rabbit cardiac Purkinje fibres. J Physiol 371:239–255.

    PubMed  CAS  Google Scholar 

  164. Carmeliet E, Ramon J (1980) Effect of acetylcholine on time-independent currents in sheep cardiac Purkinje fibers. Pfluegers Arch 387:207–216.

    Article  CAS  Google Scholar 

  165. Löffelholz K, Pappano AJ (1985) The parasympathetic neuroeffector junction of the heart. Pharmacol Rev 37:1–24.

    PubMed  Google Scholar 

  166. Tokimasa T, Hasuo H, Koketsu K (1981) Desensitization of the muscarinic acetylcholine receptor of atrium in bullfrogs. Jpn J Physiol 31:83–97.

    Article  PubMed  CAS  Google Scholar 

  167. Salata JJ, Jalife J (1985) “Fade” of hyperpolarizing responses to vagal stimulation at the sinoatrial and atrioventricular nodes of the rabbit heart. Circ Res 56:718–727.

    PubMed  CAS  Google Scholar 

  168. Nilius B (1983) Desensitization of the muscarinic receptor in the mammalian atrial myocardium. Biomed Biochim Acta 42:519–526.

    PubMed  CAS  Google Scholar 

  169. Boyett MR, Roberts A (1987) The fade of the response to acetylcholine at the rabbit isolated sino-atrial node. J Physiol 393:171–194.

    PubMed  CAS  Google Scholar 

  170. Hartzell HC (1979) Adenosine receptors in frog sinus venosus: slow inhibitory potentials produced by adenine compounds and acetylcholine. J Physiol 293:23–49.

    PubMed  CAS  Google Scholar 

  171. Friel DD, Bean BP (1988) Two ATP-activated conductances in bullfrog atrial cells. J Gen Physiol 91:1–27.

    Article  PubMed  CAS  Google Scholar 

  172. Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B (1985) GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 317:536–538.

    Article  PubMed  CAS  Google Scholar 

  173. Breitwieser GE, Szabo G (1985) Uncoupling of cardiac muscarinic and β-adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature 317:538–540.

    Article  PubMed  CAS  Google Scholar 

  174. Breitwieser GE, Szabo G (1988) Mechanism of muscarinic receptor-induced K channel activation as revealed by hydrolysis-resistant GTP analogues. J Gen Physiol 91:469–493.

    Article  PubMed  CAS  Google Scholar 

  175. Birnbaumer L, Brown AM (1987) G protein opening of K+ channels. Nature 327:21–22.

    Article  PubMed  CAS  Google Scholar 

  176. Brown AM, Birnbaumer L (1988) Direct G protein gating of ion channels. Am J Physiol 254:H401–H410.

    PubMed  CAS  Google Scholar 

  177. Codina J, Yatani A, Grenet D, Brown AM, Birnbaumer L (1987) The a subunit of the GTP binding protein Gk opens atrial potassium channels. Science 236:442–445.

    Article  PubMed  CAS  Google Scholar 

  178. Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE (1987) The β-γ-subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325:321–326.

    Article  PubMed  CAS  Google Scholar 

  179. Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE (1987) G protein opening of K+ Channels. Nature 327:22.

    Article  CAS  Google Scholar 

  180. Birnbaumer L (1987) Which G protein subunits are the active mediators in signal transduction. TIPS 8:209–211.

    CAS  Google Scholar 

  181. Yatani A, Codina J, Brown AM, Birnbaumer L (1987) Direct activation of mammalian atrial muscarinic potassium channels by GTP regulatory protein GK. Science 235:207–211.

    Article  PubMed  CAS  Google Scholar 

  182. Levine RR, Birdsall NJM, North RA, Holman M, Watanabe A, Iversen LL (eds) (1988) Subtypes of muscarinic receptors III. Elsevier, Cambridge (TIPS supplement).

    Google Scholar 

  183. Osterrieder W, Noma A, Trautwein W (1980) On the kinetics of the potassium channel activated by acetylcholine in the S-A node of the rabbit heart. Pfluegers Arch 386:101–109.

    Article  CAS  Google Scholar 

  184. Momose Y, Giles W, Szabo G (1984) Acetylcholine-induced K+ current in amphibian atrial cells. Biophys J 45:20–22.

    Article  PubMed  CAS  Google Scholar 

  185. Horie M, Irisawa H (1987) Rectification of muscarinic K+ current by magnesium ions in guinea-pig atrial cells. Am J Physiol 253:H210–H214.

    PubMed  CAS  Google Scholar 

  186. Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148.

    Article  PubMed  CAS  Google Scholar 

  187. Kakei M, Noma A (1984) Adenosine-5′-triphosphate-sensitive single potassium channel in the atrioventricular node cell of the rabbit heart. J Physiol 352:265–284.

    PubMed  CAS  Google Scholar 

  188. Kakei M, Noma A, Shibasaki T (1985) Properties of adenosine-triphosphate-regulated potassium channels in guinea-pig ventricular cells. J Physiol 363:441–462.

    PubMed  CAS  Google Scholar 

  189. Belles B, Hescheler J, Trube G (1987) Changes in membrane currents in cardiac cells induced by long whole cell recordings and tolbutamide. Pfluegers Arch 409:582–588.

    Article  CAS  Google Scholar 

  190. Horie M, Irisawa H, Noma A (1987) Voltage-dependent magnesium block of adenosine-triphosphate-sensitive potassium channel in guinea-pig ventricular cells. J Physiol 387:251–272.

    PubMed  CAS  Google Scholar 

  191. Findlay I (1987) ATP-sensitive K+ channels in rat ventricular myocytes are blocked and inactivated by internal divalent cations. Pfluegers Arch 410:313–320.

    Article  CAS  Google Scholar 

  192. Zilberter Y, Burnashev N, Papin A, Portnov V, Khodorov B (1988) Gating kinetics of ATP-sensitive single potassium channels in myocardial cells depends on electromotive force. Pfluegers Arch 411:584–589.

    Article  CAS  Google Scholar 

  193. Ashcroft FM (1988) Adenosine 5′-triphosphate-sensitive potassium channels. Annu Rev Neurosci 11:97–118.

    Article  PubMed  CAS  Google Scholar 

  194. Cook DL, Hales N (1984) Intracellular ATP directly blocks K+ channels in pancreatic β cells. Nature 311:271–273.

    Article  PubMed  CAS  Google Scholar 

  195. Rorsman P, Trube G (1985) Glucose dependent K+-channels in pancreatic β-cells are regulated by intracellular ATP. Pfluegers Arch 405:305–309.

    Article  CAS  Google Scholar 

  196. Trube G, Rorsman P, Ohno-Shosaku T (1986) Opposite effects of tolbutamide and diazox-ide on the ATP-dependent K+ channel in mouse pancreatic β-cells. Pfluegers Arch 407:493–499.

    Article  CAS  Google Scholar 

  197. Noma A, Shibasaki T (1985) Membrane current through adenosine-triphosphate-regulated potassium channels in guinea-pig ventricular cells. J Physiol 363:463–480.

    PubMed  CAS  Google Scholar 

  198. Vleugels A, Carmeliet E (1976) Hypoxia increases potassium efflux from mammalian myocardium. Experientia 32:483–484.

    Article  PubMed  CAS  Google Scholar 

  199. Vleugels A (1979) Hypoxia and the duration of the cardiac action potential. Thesis, Acco, Leuven.

    Google Scholar 

  200. Vleugels A, Vereecke J, Carmeliet E (1980) Ionic currents during hypoxia in voltage-clamped cat ventricular muscle. Circ Res 47:501–508.

    PubMed  CAS  Google Scholar 

  201. Isenberg G, Vereecke J, Van der Heyden G, Carmeliet E (1983) The shortening of the action potential by DNP in guinea-pig ventricular myocytes is mediated by an increase of a time-independent K conductance. Pfluegers Arch 397:251–259.

    Article  CAS  Google Scholar 

  202. Conrad CH, Mark RG, Bing OHL (1983) Outward current and repolarization in hypoxic rat myocardium. Am J Physiol 244:H341–H350.

    PubMed  CAS  Google Scholar 

  203. Van der Heyden G, Vereecke J, Carmeliet E (1985) The effect of cyanide on the K-current in guinea-pig ventricular myocytes. Basic Res Cardiol 80 (Suppl 1): 93–96.

    PubMed  Google Scholar 

  204. Allen DG, Orchard CH (1987) Myocardial contractile function during ischemia and hypoxia. Circ Res 60:153–168.

    PubMed  CAS  Google Scholar 

  205. Carmeliet E (1987) Oral antidiabetics and hypoxic shortening of the cardiac action potential. Eur Heart J 8 (Suppl 2): 315.

    Google Scholar 

  206. Kantor PF, Coetzee WA, Carmeliet EE, Dennis SC, Opie LH (1989) Reduction in is-chemic K+ loss and arrhythmias: the effect of the sulfonylurea, glibenclamide. Circ Res (in press).

    Google Scholar 

  207. Niho T, Notsu T, Ishikawa H, Funato H, Yamazaki M, Takahashi H (1987) Study of mechanisms and effects of sodium 5 hydroxy-decanoate on experimental ischemic ventricular arrhythmia. Nippon Yakurigaku Zasshi 89:155–167.

    Article  PubMed  CAS  Google Scholar 

  208. Zahler R, Bittl JA, Ingwall JS (1987) Analysis of compartmentation of ATP in skeletal and cardiac muscle using 31P nuclear magnetic resonance saturation transfer. Biophys J 51:883–893.

    Article  PubMed  CAS  Google Scholar 

  209. Weiss JN, Lamp ST (1987) Glycolysis preferentially inhibits ATP-sensitive K+ channels in isolated guinea-pig cardiac myocytes. Science 238:67–69.

    Article  PubMed  CAS  Google Scholar 

  210. Dunne MJ, Petersen OH (1986) Intracellular ADP activates K+ channels that are inhibited by ATP in an insulin secreting cell line. FEBS Lett 208:59–62.

    Article  PubMed  CAS  Google Scholar 

  211. Kakei M, Kelly RP, Ashcroft SJH, Ashcroft FM (1986) The ATP-sensitivity of K+ channels in rat pancreatic β-cells is modulated by ADP. FEBS Lett 208:63–66.

    Article  PubMed  CAS  Google Scholar 

  212. Kameyama M, Kakei M, Sato R, Shibasaki T, Matsuda H, Irisawa H (1984) Intracellular Na+ activates a K+ channel in mammalian cardiac cells. Nature 309:354–356.

    Article  PubMed  CAS  Google Scholar 

  213. Noble D (1979) The initiation of the heartbeat. Clarendon, Oxford.

    Google Scholar 

  214. McAllister RE, Noble D, Tsien RW (1975) Reconstruction of the electrical activity of cardiac Purkinje fibres. J Physiol 251:1–59.

    PubMed  CAS  Google Scholar 

  215. DiFrancesco D, Noble D (1985) A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos Trans R Soc Lond [Biol] 307:353–398.

    Article  CAS  Google Scholar 

  216. Beeler GW, Reuter H (1977) Reconstruction of the action potential of ventricular myocar-dial fibres. J Physiol 268:177–210.

    PubMed  CAS  Google Scholar 

  217. Yanagihara K, Noma A, Irisawa H (1980) Reconstruction of sino-atrial node pacemaker potential based on voltage clamp experiments. Jpn J Physiol 30:841–857.

    Article  PubMed  CAS  Google Scholar 

  218. Noble D, Noble SJ (1984) A model of sino-atrial node electrical activity based on a modification of the DiFrancesco-Noble (1984) equations. Proc R Soc Lond [Biol] 222:295–304.

    Article  CAS  Google Scholar 

  219. Hille B (1984) Ionic channels of excitable membranes. Sinauer, Massachusetts.

    Google Scholar 

  220. Hille B, Schwarz W (1978) Potassium channels as multi-ion single-file pores. J Gen Physiol 72:409–442.

    Article  PubMed  CAS  Google Scholar 

  221. Tempel BL, Papazian DM, Schwarz TL, Jan YN, Jan LY (1987) Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 237:770–775.

    Article  PubMed  CAS  Google Scholar 

  222. Timpe LC, Schwarz TL, Tempel BL, Papazian DM, Jan YN, Jan LY (1987) Expression of functional potassium channels from Shaker cDNA in Xenopus oocytes. Nature 331:143–145.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vereecke, J., Carmeliet, E. (1989). The Cardiac K Current System. In: Brachmann, J., Schömig, A. (eds) Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74317-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74317-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74319-1

  • Online ISBN: 978-3-642-74317-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics