Skip to main content
  • 143 Accesses

Abstract

“Ultrasound” is the name given to a class of mechanical pressure waves that can be propagated to liquids, solids, and, to some extent, gases [1], Mechanical waves have frequencies which range from little more than 0 Hz up to several hundred million. For convenience, this vast range may be represented in the form of an acoustic spectrum, which is analogous to the more familiar spectrum of electromagnetic radiation. A typical frequency spectrum of mechanical waves is represented in Fig. 2.1, where a logarithmic scale has been chosen so that each tenfold increase in frequency is represented by an equal distance. The spectrum can be seen to consist of three broad regions, which overlap at their boundaries. The central region encompasses the audible spectrum from about 20–30 Hz up to about 16 Hz, these frequencies being the approximate lower and upper frequency limits of the average human ear. The region below about 20 Hz is designated infrasound, while frequencies greater than about 16 kHz are called ultrasound (US).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hueter TF, Bolt RH (1955) Sonics. Wiley, New York

    Google Scholar 

  2. Grossman CC et al. (eds) (1966) Diagnostic ultrasound. Plenum, New York

    Google Scholar 

  3. Wells PNT (1969) Physical principles of ultrasonic diagnosis. Academic, New York

    Google Scholar 

  4. Donald W, Baker BS (1974) Physical and technical principles. In: King D (ed) Diagnostic ultrasound. Mosby, St Louis

    Google Scholar 

  5. Gebhardt W, Schwarz H-P (1982) Untersuchungen zur Blasenwanddickenmessung und Gewebedifferenzierung mit einem transurethralen Scanner, Untersuchungsprotokoll für das Urologische Städtische Klinikum, Karlsruhe, May

    Google Scholar 

  6. Krautkrämer J (1975) Werkstoffprüfung mit Ultraschall. Springer, Berlin Heidelberg New York, p 20

    Google Scholar 

  7. Wells PNT (1977) Biomedical Ultrasound. Academic, London

    Google Scholar 

  8. Roy Williams A (1983) Ultrasound: biological effects and potential hazards. Academic, Medical Physics Series, London

    Google Scholar 

  9. Goebbels K (1984) Vortrag: Arbeitskreistagung Intercavitäre Sonographie, Universitätsklinik Homburg/Saar, Oct 6

    Google Scholar 

  10. Schueller J et al. (1981) Beurteilung von Blasenveränderung mit der intravesikalen Ultraschalltomographie. Urologe [A] 20: 204–210

    Google Scholar 

  11. Frentzel-Beyme B et al. (1982) Die transrektale Prostatasonographie. Computertomogr Sonogr Juni 2 (2): 58–112

    Google Scholar 

  12. Heyder N (1987) Endoscopic ultrasonography of tumors of the oesophagus and the stomach. Surg Endosc 1: 17–23

    Article  PubMed  CAS  Google Scholar 

  13. Souquet J (1982) Phased array transducer technology for transesophageal imaging of the heart. In: Hanrath P et al. (ed) Cardiovascular diagnosis by ultrasound. Nijhoff, The Hague, p 256

    Google Scholar 

  14. Prospect US: GF-UM2/EU-M2. Olympus Optical Co. (Europe)

    Google Scholar 

  15. Ferner H, Staubesand J (eds) (1982) Sobotta Atlas der Anatomie des Menschen, vol 2. Urban and Schwarzenberg, Munich

    Google Scholar 

  16. McElroy JT (1966) Focused ultrasonic beams. Automation Industry, Inc., Material Evaluation Group, Research Division, Boulder

    Google Scholar 

  17. Frey WJ, Dunn F (1962) Ultrasound: analysis and experimental methods in biological research. In: Nastuk WL (ed) Physical techniques in biological research, vol 4. Academic, New York, pp 261–394

    Google Scholar 

  18. Recorded by Dr. Hildebrandt, Department of Surgery, University of Saarland, FRG

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schwarz, HP. (1990). Endosonography: Physical Basics and Instrumentation. In: Feifel, G., Hildebrandt, U., Mortensen, N.J.M. (eds) Endosonography in Gastroenterology, Gynecology and Urology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74252-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74252-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74254-5

  • Online ISBN: 978-3-642-74252-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics