Advertisement

Atomic and Electronic Structure of Compound Semiconductor Interfaces

  • C. B. Duke
Conference paper
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 14)

Abstract

The cleavage faces of zincblende and wurtzite structure compound semiconductors constitute the best understood of all semiconductor interfaces. Structure determinations by low-energy electron diffraction and ion-scattering of the zincblende (110) cleavage surfaces reveal not only greatly distorted surface geometries relative to the bulk, but also the unanticipated result that III–V and II–VI compounds exhibit comparable surface structures in contrast to their quite different molecular geometries. This observation motivated an extensive theoretical effort to predict these structures, with the result that an electronically driven atomic relaxation phenomenon provides a common quantitative description of all the experimental data. Extension of this theory to wurtzite (\(10\bar 10\)) and (\(10\bar 20\)) cleavage faces reveals an analogous mechanism for relaxations at these surfaces, as well as the existence for each surface of a unique atomic geometry, determined by the atomic connectivity of the truncated bulk surface, which depends on the specific material only via a linear scaling with the bulk lattice constant. Further extensions of the theory and structure analyses to interface geometries, specifically Sb on GaAs(110) and InP(110), reveal the existence of a new type of epitaxically mediated pi bond of (1×1) overlayers of Sb on GaAs and InP. Therefore the determination and prediction of surface atomic geometries have disclosed unanticipated types of chemical bonding which exhibit neither bulk nor molecular analogs.

Keywords

Scanning Tunneling Microscopy Compound Semiconductor Linear Scaling Cleavage Surface Substrate Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.P. Chen, A.F. Voter and D.J. Srolovitz: Phys. Rev. Lett. 57 1308 (1986).CrossRefGoogle Scholar
  2. 2.
    C.B. Duke: Surface Properties of Electronic Materials, ed, by D.A. King and D.P. Woodruff (Elsevier Science Publishers, Amsterdam, 1987); chpt, 3.Google Scholar
  3. 3.
    C.B. Duke: J. Vac. Sci. Technol. B1, 732 (1983).Google Scholar
  4. 4.
    C. Mailhiot, C.B. Duke and D.J. Chadi: Surf. Sci. 149, 366 (1985).CrossRefGoogle Scholar
  5. 5.
    C.B. Duke, C. Mailhiot, A. Paton, D.J. Chadi and A. Kahn: Technol. B3, 1087 (1985).Google Scholar
  6. 6.
    D.J. Chadi: Phys. Rev. B9, 2074 (1979).Google Scholar
  7. 7.
    Y.R. Wang, C.B. Duke and C. Mailhiot: Surf. Sci. Lett. 188, L708 (1987).CrossRefGoogle Scholar
  8. 8.
    Y.R. Wang and C.B. Duke: Phys. Rev. B 36, 2763 (1987).CrossRefGoogle Scholar
  9. 9.
    A.C. Ferraz and G.P. Srivastava: Surf. Sci. 182, 161 (1987).CrossRefGoogle Scholar
  10. 10.
    A.C. Ferraz and G.P. Srivastava: J. Phys. C: Solid State Phys. 19, 5987 (1986).CrossRefGoogle Scholar
  11. 11.
    Y.R. Wang and C.B. Duke: Surf. Sci. 192, 209 (1987).CrossRefGoogle Scholar
  12. 12.
    Y.R. Wang, C.B. Duke, A. Paton, K. Stiles and A. Kahn: Phys. Rev. B in press.Google Scholar
  13. 13.
    C.B. Duke and Y.R. Wang: J. Vac. Sci. Technol. A 6 (1988) in press.Google Scholar
  14. 14.
    A. Kahn: Surf. Sci. Repts. 3, 193 (1983).CrossRefGoogle Scholar
  15. 15.
    D.J. Chadi: Phys. Rev. Lett. 52, 1911 (1984).CrossRefGoogle Scholar
  16. 16.
    D.J. Chadiz J. Vac. Sci. Technol. A4, 944 (1986).Google Scholar
  17. 17.
    E. Kaxiras, Y. Bar-Yam, J.D. Joannopoulos and K.C. Pandey: Phys. Rev. B 33, 4406 (1986).Google Scholar
  18. 18.
    D.J. Chadi: Phys. Rev. Lett. 57 102 (1986).CrossRefGoogle Scholar
  19. 19.
    D.J. Chadi: J. Vac. Sci. Technol. A5, 834 (1987).Google Scholar
  20. 20.
    X.-Y. Hou, G-S. Dong, X-m Ding and X. Wang: Surf. Sci. 183, 123 (1987).CrossRefGoogle Scholar
  21. 21.
    C. Mailhiot, C.B. Duke and D.J. Chadi: Phys. Rev. Lett. 53, 2114 (1984); Phys. Rev. B 31, 2213 (1985).CrossRefGoogle Scholar
  22. 22.
    J. Carelli and A. Kahn: Surf. Sci. 116, 380 (1982).CrossRefGoogle Scholar
  23. 23.
    C.B. Duke, A. Paton, W.K. Ford, A. Kahn and J. Carelli: Phys. Rev. B26, 803 (1982).Google Scholar
  24. 24.
    C.M. Bertoni, C. Calendra, F. Manghi and E. Molinari: Phys. Rev. B27, 1251 (1983).Google Scholar
  25. 25.
    K. Li and A. Kahn: J. Vac. Sci. Technol. A 4, 958 (1986).Google Scholar
  26. 26.
    W. Pletschen, N. Esser, H. Munder, D. Zahn, J. Geurts and W. Richter: Surf. Sci. 178, 140 (1986).CrossRefGoogle Scholar
  27. 27.
    M. Mattern-Klossen, R. Striimpler and H. Lüth: Phys. Rev. B 33, 2259 (1986).Google Scholar
  28. 28.
    A. Tulke, M. Mattern-Klossen and H. Lüth: Solid State Commun. 59 303 (1986).CrossRefGoogle Scholar
  29. 29.
    A. Tulke and H. Lüth: Surf. Sci. 178, 131 (1986).CrossRefGoogle Scholar
  30. 30.
    R. Striimpler and H. Liithe: Surf.Sci. 182, 545 (1987).CrossRefGoogle Scholar
  31. 31.
    P. Martensson, G.V. Hansson, M. Lähdeniemi, K.O. Magnusson, S. Wiklund and J.M. Nicholls: Phys. Rev. B33, 7399 (1986).Google Scholar
  32. 32.
    C. Maani, A.C. McKinley and R.H. Williams: J. Phys. C: Solid State Phys. 18 4975 (1985).CrossRefGoogle Scholar
  33. 33.
    C.B. Duke, C. Mailhiot, A. Paton, K. Li, C. Bonapace and A. Kahn: Surf. Sci. 163, 391 (1985).CrossRefGoogle Scholar
  34. 34.
    D. Zahn, N. Esser, W. Pletschen, J. Geurts and W. Richter: Surf. Sci. 168, 823 (1986).CrossRefGoogle Scholar
  35. 35.
    C. Mailhiot, C.B. Duke and D.J. Chadi: J. Vac. Sci. Technol. A3, 915 (1985).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • C. B. Duke
    • 1
  1. 1.Xerox Webster Research CenterWebsterUSA

Personalised recommendations