Skip to main content

Synthesis and Function of Glycosylated Proteins in Saccharomyces cerevisiae

  • Conference paper

Abstract

Proteins can be covalently modified in a number of ways. The most complex and evolved modification is glycosylation. Glycoproteins occur in all eukaryotic cells (Kornfeld and Kornfeld 1985; Tanner and Lehle 1987). They are also found frequently, but not always, as constituents of cell envelopes of archaebacteria (Sumper 1987). The possibility of rare occurrence in eubacteria (Messner and Sleytr 1988) is still under debate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold E, Tanner W (1982) An obligatory role of protein glycosylation in the life cycle of yeast cells. FEBS Lett 148: 49–53

    Article  PubMed  CAS  Google Scholar 

  • Babczinski P, Tanner W (1973) Involvement of dolichol monophosphate in the formation of specific mannosyl linkages in yeast glycoproteins. Biochem Biophys Res Commun 54: 1119–1124

    Article  PubMed  CAS  Google Scholar 

  • Baynes JW, Hsu AF, Heath EC (1973) The role of mannosyl-phosphoryl-dihydropolyisoprenol in the synthesis of mammalian glycoproteins. J Biol Chem 248: 5693–5704

    PubMed  CAS  Google Scholar 

  • Behrens NH, Leloir LF (1970) Dolichol monophosphate glucose: an intermediate in glucose transfer in liver. Proc Natl Acad Sci USA 66: 153–159

    Article  PubMed  CAS  Google Scholar 

  • Betz R, Duntze W, Manney TR (1978) Mating-factor-mediated sexual agglutination in Saccharomyces cerevisiae. FEBS Lett 4: 107–110

    Google Scholar 

  • Beyer TA, Sadler JE, Rearick JI, Paulson JC, Hill RL (1981) Glycosyltransferases and their use in assessing oligosaccharide structure and structure-function relationships. Adv Enzymol 52: 23–175

    PubMed  CAS  Google Scholar 

  • Bretthauer RK, Wu S (1975) Synthesis of the mannosyl-O-serine(threonine)-linkage of glycoproteins from polyisoprenylphosphate mannose in yeast (Hansenula holstii). Arch Biochem Biophys 167: 151–160

    Article  PubMed  CAS  Google Scholar 

  • Byrd JC, Tarentino AL, Maley F, Atkinson PH, Trimble RB (1982) Glycoproteins synthesis in yeast. J Biol Chem 257: 14657–14666

    PubMed  CAS  Google Scholar 

  • Cohen RE, Ballou CE (1981) Mannoproteins: structure. In: Tanner W, Loewus FA (eds) Plant carbohydrates II. Encyclo Plant Physiol, N Ser, vol 13B. Springer, Berlin Heidelberg New York, pp 441–458

    Google Scholar 

  • Ettenhuber C (1985) Untersuchungen phasenspezifischer Stoffwechselvorgänge in synchronisierten Hefekulturen. Diplomarb, Univ Regensburg

    Google Scholar 

  • Evans PJ, Hemming FW (1973) The unambiguous characterization of dolichol phosphate mannose as a product of mannosyl transferase in pig liver endoplasmic reticulum. FEBS Lett 31: 335–338

    Article  PubMed  CAS  Google Scholar 

  • Eylar EH (1965) On the biological role of glycoproteins. J Theor Biol 10: 89–113

    Article  Google Scholar 

  • Gold MH, Hahn HJ (1976) Role of mannosyl lipid intermediate in the synthesis of Neurospora crassa glycoproteins. Biochemistry 15: 1808–1814

    Article  PubMed  CAS  Google Scholar 

  • Haselbeck A, Tanner W (1982) Dolichyl phosphate-mediated mannosyl transfer through liposomal membranes. Proc Natl Acad Sci USA 79: 1520–1524

    Article  PubMed  CAS  Google Scholar 

  • Haselbeck A, Tanner W (1983) O-Glycosylation in Saccharomyces cerevisiae is initiated at the endoplasmic reticulum. FEBS Lett 158: 335–338

    Article  PubMed  CAS  Google Scholar 

  • Haselbeck A, Tanner W (1984) Further evidence for dolichol phosphate-mediated glycosyl translocation through membranes. FEMS Lett 21: 305–308

    Article  CAS  Google Scholar 

  • Hauser K (1988) Hefe-Agglutinine: Optimierung eines Testsystems; Versuche zur Funktion der Kohlenhydratketten des α-Agglutinins; Anreicherung eines α–Agglutinins. Diplomarb, Univ Regensburg

    Google Scholar 

  • Hickman S, Shapiro LJ, Neufeld EF (1974) A recognition marker required for uptake of a lysosomal enzyme by cultured fibroblasts. Biochem Biophys Res Commun 57: 55–61

    Article  PubMed  CAS  Google Scholar 

  • Holt GD, Hart GW (1986) The subcellular distribution of terminal N-acetylglueosamine moieties. J Biol Chem 261: 8049–8057

    PubMed  CAS  Google Scholar 

  • Huffaker T, Robbins PW (1982) Temperature-sensitive yeast mutants deficient in asparagine-linked glycosylation. J Biol Chem 257: 3203–3210

    PubMed  CAS  Google Scholar 

  • Johnson LM, Bankaitis VA, Emr SD (1987) Distinct sequence determinants direct intracellular sorting and modification of a yeast vacuolar protease. Cell 48: 875–885

    Article  PubMed  CAS  Google Scholar 

  • Jung P, Tanner W (1973) Identification of the lipid intermediate in yeast mannan biosynthesis. Eur J Biochem 37: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Kaplan A, Archord DT, Sly WS (1977) Phosphohexosyl components of a lysosomal enzyme are recognized by pinocytosis receptors on human fibroplasts. Proc Natl Acad Sci USA 74: 2026–2030

    Article  PubMed  CAS  Google Scholar 

  • Klebl F, Huffaker TC, Tanner W (1984) A temperature-sensitive N-glycosylation mutant of S. cerevisiae that behaves like a cell-cycle mutant. Exp Cell Res 150: 309–313

    Article  PubMed  CAS  Google Scholar 

  • Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54: 631–664

    Article  PubMed  CAS  Google Scholar 

  • Larriba G, Elorza MV, Villanueva JR, Sentandreu R (1976) Participation of dolichol phosphoman-nose in the glycosylation of yeast wall mannoproteins at the polysomal level. FEBS Lett 71: 316–320

    Article  PubMed  CAS  Google Scholar 

  • Lehle L (1981) Biosynthesis of mannoproteins in fungi. In: Tanner W, Loewus FA (eds) Plant carbohydrates II. Encycl Plant Physiol, N Ser, vol 13B. Springer, Berlin Heidelberg New York, pp 458–483

    Google Scholar 

  • Lehle L, Bause E (1984) Primary structural requirements for N- and O-glycosylation of yeast man-noproteins. Biochim Biophys Acta 799: 246–251

    CAS  Google Scholar 

  • Lehle L, Tanner W (1976) The specific site of tunicamycin inhibition in the formation of dolichol-bound N-acetylglucosamine derivatives. FEBS Lett 71: 167–170

    Article  CAS  Google Scholar 

  • Letoublon R, Got R (1974) Rôle d’un intermédiaire lipique dans le transfert du mannose à des accepteurs glycoprotéique endogènes chez Aspergillus niger. FEBS Lett 46: 214–217

    Article  PubMed  CAS  Google Scholar 

  • Li E, Tabas I, Kornfeld S (1978) The synthesis of complex-type oligosaccharides. J Biol Chem 253: 7762–7770

    PubMed  CAS  Google Scholar 

  • Lin TS, Kolattukudy PE (1976) Evidence for novel linkage in a glycoprotein involving β–hydroxyphenylalanine and β-hiydroxytyrosine. Biochem Biophys Res Commun 72: 243–250

    Article  PubMed  CAS  Google Scholar 

  • Marshall RD (1974) The nature and metabolism of the carbohydrate-peptide linkages of glycoproteins. Biochem Soc Symp 40: 17–26

    PubMed  CAS  Google Scholar 

  • Messner P, Sleytr UB (1988) Asparaginyl-rhamnose: a novel type of a protein-carbohydrate linkage in a eubacterial surface-layer glycoprotein. FEBS Lett 228: 317–320

    Article  PubMed  CAS  Google Scholar 

  • Nakajima T, Ballou CE (1974) Characterization of the carbohydrate fragments obtained from Saccharomyces cerevisiae mannan by alkaline degradation. J Biol Chem 249: 7679–7684

    PubMed  CAS  Google Scholar 

  • Nakajima T, Ballou CE (1975) Yeast manno-protein biosynthesis: solubilization and selective assay of four mannosyltransferases. Proc Natl Acad Sci USA 72: 3912–3916

    Article  PubMed  CAS  Google Scholar 

  • Orlean P, Ammer H, Watzele M, Tanner W (1986) Synthesis of an O-glycosylated cell surface protein induced in yeast by α-factor. Proc Natl Acad Sci USA 83: 6263–6266

    Article  PubMed  CAS  Google Scholar 

  • Parodi A J (1981) Biosynthesis mechanisms for cell envelope polysaccharides. In: Arnold WN (ed) Yeast cell envelopes: biochemistry, biophysics and ultrastructure, vol II. CRC Press, Boca Raton, pp 47–64

    Google Scholar 

  • Pierce M, Ballou CE (1983) Cell-cell recognition in yeast. Characterization of the sexual agglutination factors from Saccharomyces kluyveri. J Biol Chem 258: 3576–3582

    PubMed  CAS  Google Scholar 

  • Robbins PW, Hubbard SC, Turco SJ, Wirth DF (1977) Proposal for a common oligosaccharide intermediate in the synthesis of membrane glycoproteins. Cell 12: 893–900

    Article  PubMed  CAS  Google Scholar 

  • Roth J (1984) Cytochemical localization of terminal N-acetyl-D-galactosamine residues in cellular compartments of intestinal goblet cells: implications for the topology of O-glycosylation. J Cell Biol 98: 399–406

    Article  PubMed  CAS  Google Scholar 

  • Schekman R (1985) Protein localization and membrane traffic in yeast. Annu Rev Cell Biol 1: 115–143

    Article  PubMed  CAS  Google Scholar 

  • Schwaiger H, Hasilik A, Figura K von, Wiemken A, Tanner W (1982) Carbohydrate-free carboxypep-tidase Y is transferred into the lysosome-like vacuole. Biochem Biophys Res Commun 104: 950–956

    Article  PubMed  CAS  Google Scholar 

  • Selvendran RR, O’Neill MA (1982) Plant glycoproteins. In: Loewus FA, Tanner W (eds) Plant carbohydrates I. Encycl Plant Physiol, N Ser, vol 13 A. Springer, Berlin Heidelberg New York, pp 515–583

    Chapter  Google Scholar 

  • Sentandreu R, Northcote DH (1969) The characterization of oligosaccharide attached to threonine and serine in mannan glycopeptides obtained from the cell wall of yeast. Carbohydr Res 10: 584–585

    Article  CAS  Google Scholar 

  • Sharma CB, Babczinski P, Lehle L, Tanner W (1974) The role of dolichol monophosphate in glycoprotein biosynthesis in S. cerevisiae. Eur J Biochem 46: 35–41

    Article  PubMed  CAS  Google Scholar 

  • Snider MD, Rogers OC (1984) Transmembrane movement of oligosaccharide-lipids during glycoprotein synthesis. Cell 36: 753–761

    Article  PubMed  CAS  Google Scholar 

  • Soliday CL, Kolattukudy PE (1979) Introduction of O-glyeosidically linked mannose into proteins via mannosyl phosphoryl dolichol by microsomes from Fusarium solani f. pisi. Arch Biochem Biophys 197: 367–378

    Article  PubMed  CAS  Google Scholar 

  • Struck DK, Lennarz WJ (1980) The function of saccharide-lipids in synthesis of glycoproteins. In: Lennarz WJ (ed) The biochemistry of glycoproteins and proteoglycans. Plenum, New York London, pp 35–83

    Google Scholar 

  • Sumper M (1987) Halobacterial glycoprotein biosynthesis. Biochim Biophys Acta 906: 69–79

    PubMed  CAS  Google Scholar 

  • Takahashi N, Hotta T, Ishihara H, Mori M, Tejima S, Bliguy R, Akazawa T, Endo S, Arata Y (1986) Xylose-containing common structural unit in N-linked oligosaccharides of laccase from Sycamore cells. Biochemistry 25: 388–395

    Article  CAS  Google Scholar 

  • Takatsuki A, Kohno K, Tamura G (1975) Inhibition of biosynthesis of polyisoprenol sugars in chick embryo microsomes by tunicamycin. Agric Biol Chem 39:2089–2091

    Article  CAS  Google Scholar 

  • Tanner W (1969) A lipid intermediate in mannose biosynthesis in yeast. Biochem Biophys Res Commun 35: 144–150

    Article  PubMed  CAS  Google Scholar 

  • Tanner W, Lehle L (1987) Protein glycosylation in yeast. Biochim Biophys Acta 906: 81–99

    PubMed  CAS  Google Scholar 

  • Tanner W, Jung P, Behrens NH (1971) Dolicholmonophosphates: Mannosyl acceptors in a particulate in vitro system of S. cerevisiae. FEBS Lett 16: 245–248

    Article  PubMed  CAS  Google Scholar 

  • Terrance K, Heller P, Wu Y-S, Lipke PN (1987) Identification of glycoprotein components of a agglutinin, a cell adhesion protein from Saccharomyces cerevisiae. J Bacteriol 169: 475–482

    PubMed  CAS  Google Scholar 

  • Tkacz JS, Lampen JO (1975) Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf–liver microsomes. Biochem Biophys Res Commun 65: 248–257

    Article  PubMed  CAS  Google Scholar 

  • Vai M, Popolo L, Alberghina L (1987) Effect of tunicamycin on cell cycle progression in budding yeast. Exp Cell Res 171: 448–459

    Article  PubMed  CAS  Google Scholar 

  • Vails LA, Hunter CP, Rothman JH, Stevens TH (1987) Protein sorting in yeast: the localization determinant of yeast vacuolar carboxypeptidase Y resides in the propeptide. Cell 48: 887–897

    Article  Google Scholar 

  • Watzele M, Klis F, Tanner W (1988) Purification and characterization of the inducible a agglutinin of Saccharomyces cerevisiae. EMBO J 7: 1483–1488

    PubMed  CAS  Google Scholar 

  • Yanagishima N (1984) Mating systems and sexual interactions in yeast. In: Linskens HF, Heslop-Harrion J (eds) Cellular interactions. Encycl Plant Physiol, N Ser, vol 17. Springer, Berlin Heidelberg New York, pp 403–423

    Google Scholar 

  • Yen PH, Ballou CE (1974) Partial characterization of the sexual agglutination factor from Hansenula wingei Y-2340 type 5 cells. Biochemistry 13: 2428–2437

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tanner, W. (1990). Synthesis and Function of Glycosylated Proteins in Saccharomyces cerevisiae . In: Kuhn, P.J., Trinci, A.P.J., Jung, M.J., Goosey, M.W., Copping, L.G. (eds) Biochemistry of Cell Walls and Membranes in Fungi. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74215-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74215-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74217-0

  • Online ISBN: 978-3-642-74215-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics