Skip to main content

A Novel Computer Model for Generating Cell Shape: Application to Fungal Morphogenesis

  • Conference paper

Abstract

The question of how fungal cells attain their characteristic morphology has long been of great interest to experimental and theoretical biologists. Much of this attention has centered on hyphae, the tip-growing tubular cells typical of fungi (for a recent comprehensive review of fungal apical growth see Wessels 1986).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams AEM, Pringle JR (1984) Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae. J Cell Biol 98: 934–945

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM, Soll DR (1986) Differences in actin localization during bud and hypha formation in the yeast Candida albicans. J Gen Microbiol 132: 2035–2047

    PubMed  CAS  Google Scholar 

  • Barstow WE, Lovett JS (1974) Apical vesicles and microtubules in rhizoids of Blastocladiella emersonii: effects of actinomycin D and cycloheximide on development during germination. Protoplasma 82: 103–117

    Article  PubMed  CAS  Google Scholar 

  • Bartnicki-Garcia S (1963) Symposium on the biochemical bases of morphogenesis in fungi. III. Mold-yeast dimorphism of Mucor. Bacteriol Rev 27:293–304

    PubMed  CAS  Google Scholar 

  • Bartnicki-Garcia S (1973) Fundamental aspects of hyphal morphogenesis. In: Ashworth JM, Smith JE (eds) Microbial differentiation. Cambridge Univ Press, Cambridge, pp 245–267

    Google Scholar 

  • Bartnicki-Garcia S (1981) Cell wall construction during spore germination in Phycomycetes. In: Turian G, Hohl HR (eds) The fungal spore: morphogenetic controls. Academic Press, London New York, pp 533–556

    Google Scholar 

  • Bartnicki-Garcia S (1984) Kingdoms with walls. In: Dugger WM, Bartnicki-Garcia S (eds) Structure, function, and biosynthesis of plant cell walls. Am Soc Plant Physiol, Rockville, Maryland, pp 1–18

    Google Scholar 

  • Bartnicki-Garcia S (1987) Chitosomes and chitin biogenesis. Food Hydrocolloids 1: 353–358

    Article  CAS  Google Scholar 

  • Bartnicki-Garcia S, Lippman E (1969) Fungal morphogenesis: cell wall construction in Mucor rouxii. Science 165: 302–304

    Article  PubMed  CAS  Google Scholar 

  • Bartnicki-Garcia S, Lippman E (1977) Polarization of cell wall synthesis during spore germination of Mucor rouxii. Exp Mycol 1: 230–240

    Article  Google Scholar 

  • Bartnicki-Garcia S, Nelson N, Cota-Robles E (1968) Electron microscopy of spore germination and cell wall formation in Mucor rouxii. Arch Microbiol 63: 242–255

    Article  CAS  Google Scholar 

  • Betina V, Micekova D, Nemec P (1972) Antimicrobial properties of cytochalasins and their alteration of fungal morphology. J Gen Microbiol 71: 343–349

    CAS  Google Scholar 

  • Brunswik H (1924) Untersuchungen über Geschlechts- und Kernverhältnisse bei der Hymenonyzeten-gattung Coprinus. In: Goebel K (ed) Botanische Abhandungen, vol 5. Fischer, Jena, pp 1–152

    Google Scholar 

  • Castle ES (1953) Problems of oriented growth and structure in Phycomyces. Q Rev Biol 28: 364–372

    Article  PubMed  CAS  Google Scholar 

  • Castle ES (1958) The topography of tip growth in a plant cell. J Gen Physiol 41: 913–926

    Article  PubMed  CAS  Google Scholar 

  • Collinge AJ, Trinci APJ (1974) Hyphal tips of wild type and spreading colonial mutants of Neurospora crassa. Arch Microbiol 99: 353–368

    Article  PubMed  CAS  Google Scholar 

  • Girbardt M (1957) Der Spitzenkörper von Polystictus versicolor (L.). Planta 50: 47–59

    Article  Google Scholar 

  • Girbardt M (1969) Die Ultrastruktur der Apikalregion von Pilzhyphen. Protoplasma 67: 413–441

    Article  Google Scholar 

  • Gooday GW (1971) An autoradiographic study of hyphal growth of some fungi. J Gen Microbiol 67: 125–133

    CAS  Google Scholar 

  • Gooday GW, Trinci APJ (1980) Wall structure and biosynthesis in fungi. In: Gooday GW, Lloyd D, Trinci APJ (eds) The eukaryotic microbial cell. Cambridge Univ Press, Cambridge, pp 207–251

    Google Scholar 

  • Green PB (1965) Pathways of cellular morphogenesis. A diversity in Nitella. J Cell Biol 27: 343–363

    Article  PubMed  CAS  Google Scholar 

  • Green PB (1969) Cell Morphogenesis. Annu Rev Plant Physiol 20: 365–394

    Article  Google Scholar 

  • Green PB, King A (1966) A mechanism for the origin of specifically oriented textures in development with special reference to Nitella wall texture. Aust J Biol Sci 19: 421–437

    Google Scholar 

  • Grove SN, Bracker CE (1970) Protoplasmic organization of hyphal tips among fungi: vesicles and Spitzenkörper. J Bacteriol 104: 989–1009

    PubMed  CAS  Google Scholar 

  • Grove SN, Sweigard JA (1980) Cytochalasin A inhibits spore germination and hyphal tip growth in Gilbertella persicaria. Exp Mycol 4: 239–250

    Article  CAS  Google Scholar 

  • Grove SN, Bracker CE, Morre DJ (1970) An ultrastructural basis for hyphal tip growth in Pythium ultimum. Am J Bot 57: 245–266

    Article  Google Scholar 

  • Heath IB (1987) Preservation of a labile cortical array of actin filaments in growing hyphal tips of the fungus Saprolegnia ferax. Eur J Cell Biol 44: 10–16

    Google Scholar 

  • Heath IB, Gay JL, Greenwood AD (1971) Cell wall formation in the saprolegniales: Cytoplasmic vesicles underlying developing walls. J Gen Microbiol 65: 225–232

    Google Scholar 

  • Hoch HC, Staples RC (1985) The microtubule cytoskeleton in hyphae of Uromyces phaseoli germlings: its relationship to the region of nucleation and to the F-actin cytoskeleton. Protoplasma 124: 112–122

    Article  CAS  Google Scholar 

  • Howard RJ (1981) Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkdrper, cytoskeleton and endomembranes after freeze-substitution. J Cell Sci 48: 89–103

    PubMed  CAS  Google Scholar 

  • Howard RJ, Aist JR (1977) Effects of MBC on hyphal tip organization, growth and mitosis of Fusarium acuminatum, and their antagonism by D2O. Protoplasma 92: 195–210

    Article  PubMed  CAS  Google Scholar 

  • Howard RJ, Aist JR (1979) Hyphal tip cell ultrastructure of the fungus Fusarium: improved preservation by freeze substitution. J Ultrastruct Res 66: 224 — 234

    Article  PubMed  CAS  Google Scholar 

  • Jaffe LF (1968) Localization in the developing Fucus egg and the general role of localizing currents. Adv Morphog 7:295–327

    PubMed  CAS  Google Scholar 

  • Koch AL (1982) The shape of the hyphal tips of fungi. J Gen Microbiol 128: 947–951

    Google Scholar 

  • McClure WK, Park D, Robinson PM (1968) Apical organization in the somatic hyphae of fungi. J Gen Microbiol 50:177–182

    PubMed  CAS  Google Scholar 

  • McGillviray AM, Gow NAR (1987) The transhyphal electrical current of Neurospora crassa is carried principally by protons. J Gen Microbiol 133: 2875–2881

    CAS  Google Scholar 

  • McKerracher LJ, Heath IB (1987) Cytoplasmic migration and intracellular organelle movements during tip growth of fungal hyphae. Exp Mycol 11: 79–100

    Article  Google Scholar 

  • Picton JM, Steer MW (1982) A model for the mechanism of tip extension in pollen tubes. J Theor Biol 98: 15–20

    Article  Google Scholar 

  • Prosser JI (1979) Mathematical modelling of mycelial growth. In: Burnett JH, Trinci APJ (eds) Fungal walls and hyphal growth. Cambridge Univ Press, Cambridge, pp 359–384

    Google Scholar 

  • Prosser JI, Trinci APJ (1979) A model for hyphal growth and branching. J Gen Microbiol 111: 153–164

    PubMed  CAS  Google Scholar 

  • Reinhardt MO (1892) Das Wachstum der Pilzhyphen. Jahrb Wiss Bot 23: 479–566

    Google Scholar 

  • Riva Ricci D da, Kendrick B (1972) Computer modelling of hyphal tip growth in fungi. Can J Bot 50: 2455–2462

    Article  Google Scholar 

  • Robertson NF (1965) Presidential address: The fungal hypha. Trans Br Mycol Soc 48: 1–8

    Article  Google Scholar 

  • Runeberg P, Raudaskoski M (1986) Cytoskeletal elements in the hyphae of the homobasidiomycete Schizophyllum commune visualized with indirect immunofluorescence and NBD phallacidin. Eur J Cell Biol 41: 25–32

    Google Scholar 

  • Saunders PT, Trinci APJ (1979) Determination of tip shape in fungal hyphae. J Gen Microbiol 110: 469–473

    Google Scholar 

  • Schreurs WJ, Harold FM (1988) Transcellular proton current in Achlya bisexualis hyphae: Relationship to polarized growth. Proc Natl Acad Sci USA 85: 1534–1538

    Article  PubMed  CAS  Google Scholar 

  • Stewart PR, Rogers PJ (1983) Fungal dimorphism. In: Smith JE (ed) Fungal Differentiation. Dekker, New York Basel, pp 267–313

    Google Scholar 

  • Trinci APJ, Saunders PT (1977) Tip growth of fungal hyphae. J Gen Microbiol 103: 243–248

    Google Scholar 

  • Tucker BE, Hoch HC, Staples RC (1986) The Involvement of F Actin in Uromyces Cell Differentiation. The Effects of Cytochalasin E and Phalloidin. Protoplasma 135: 88–101

    Article  CAS  Google Scholar 

  • Wessels JGH (1986) Cell wall synthesis in apical hyphal growth. Int Rev Cytol 104: 37–79

    Article  CAS  Google Scholar 

  • Wessels JGH, Sietsma JH (1981) Cell wall synthesis and hyphal morphogenesis: a new model for apical growth. In: Robinson DG, Quader H (eds) Cell walls 1981. Wiss Verlagsges, Stuttgart, pp 135–142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bartnicki-Garcia, S., Hergert, F., Gierz, G. (1990). A Novel Computer Model for Generating Cell Shape: Application to Fungal Morphogenesis. In: Kuhn, P.J., Trinci, A.P.J., Jung, M.J., Goosey, M.W., Copping, L.G. (eds) Biochemistry of Cell Walls and Membranes in Fungi. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74215-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74215-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74217-0

  • Online ISBN: 978-3-642-74215-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics