Skip to main content

Transduction of the Calcium Signal with Special Reference to Ca2+-Induced Conidiation in Penicillium notatum

  • Conference paper
Biochemistry of Cell Walls and Membranes in Fungi

Abstract

Calcium acts as a second messenger within eukaryotic cells and transduces cell surface primary stimuli into intracellular events. The primary stimulus may be a hormone binding to its receptor, an electrical stimulus which induces a change in membrane potential, such as an action potential, or, perhaps, a physical stimulus such as a sperm entering an egg. Thus, neither the external stimulus, nor the manifested response is necessarily due to calcium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babu YS, Sack JS, Greenhough TJ, Bugg CE, Means AR, Cook WJ (1985) Three-dimensional structure of calmodulin. Nature (London) 315: 37–40

    Article  CAS  Google Scholar 

  • Berridge MJ (1985) The molecular basis of communication within the cell. Sci Am 253: 124–134

    Article  Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature (London) 312: 315–321

    Article  CAS  Google Scholar 

  • Bild GS, Bhat SG, Ramados CS, Axelrod B (1978) Biosynthesis of a prostaglandin by a plant enzyme. J Biol Chem 253: 21–23

    PubMed  CAS  Google Scholar 

  • Boss WF, Massel M (1985) Polyphosphoinositides present in plant tissue culture cells. Biochem Biophys Res Commun 132: 1018–1023

    Article  PubMed  CAS  Google Scholar 

  • Bowman BJ, Borgeson CE, Bowman EJ (1987) Composition of Neurospora crassa vacuolar membranes and comparison to endoplasmic reticulum, plasma membranes, and mitochondrial mem¬branes. Exp Mycol 11: 197–205

    Article  CAS  Google Scholar 

  • Brennan PJ, Lösel DM (1978) Physiology of fungal lipids: selected topics. Adv Microb Physiol 17: 47–179

    Article  PubMed  CAS  Google Scholar 

  • Brown EG, Newton RP (1981) Cyclic AMP and higher plants. Phytochemistry 20: 2453–2456

    Article  CAS  Google Scholar 

  • Brownlee C, Wood JW (1986) A gradient of cytoplasmic free calcium in growing rhizoid cells of Fucus serratus. Nature (London) 320: 624–626

    Article  CAS  Google Scholar 

  • Campbell AK (1983) Intracellular calcium: its universal rôle as regulator. Wiley, New York

    Google Scholar 

  • Carafoli E, Penniston JT (1985) The calcium signal. Sci Am 253: 70–116

    Article  PubMed  CAS  Google Scholar 

  • Cheung WY (1970) Cyclic 3′,5′-nucleotide phosphodiesterase: demonstration of an activator. Biochem Biophys Res Commun 33: 533–538

    Article  Google Scholar 

  • Cooper LA, Edwards SW, Gadd GM (1985) Involvement of adenosine 3′: 5-cyclic monophosphate in the yeast-mycelium transition of Aureobasidium pullulans. J Gen Microbiol 131: 1589–1593

    CAS  Google Scholar 

  • Cox JA, Ferrax C, Demaille JG, Perez RO, Van Tuinen D, Marme D (1982) Calmodulin from Neurospora crassa, general properties and conformational changes. J Biol Chem 257: 10694–10700

    PubMed  CAS  Google Scholar 

  • Dahl JS, Dahl CE (1985) Stimlulation of cell proliferation and polyphosphoinositide metabolism in Saccharomyces cerevisiae GL7 by ergosterol. Biochem Biophys Res Commun 133: 844–850

    Article  PubMed  CAS  Google Scholar 

  • Davis TN, Urdea MS, Masiarz FR, Thorner J (1986) Isolation of the yeast calmodulin gene: calmodulin is an essential protein. Cell 47: 423–431

    Article  PubMed  CAS  Google Scholar 

  • Denton RM, McCormack JG (1985) Physiological role of Ca2+ transport by mitochondria. Nature (London) 315: 635

    Article  CAS  Google Scholar 

  • Dieter P (1984) Calmodulin and calmodulin-mediated processes in plants. Plant Cell Environ 7: 371–380

    Article  CAS  Google Scholar 

  • Eilam Y, Lavi H, Grossowicz N (1985) Cytoplasmic Ca2+ homeostasis maintained by a vacuolar Ca2+ transport system in the yeast Saccharomyces cerevisiae. J Gen Microbiol 131: 623–629

    CAS  Google Scholar 

  • Elliott CG (1986) Inhibition of reproduction by Phytophthora by calmodulin-interacting compounds trifluoperazine and ophiobolin A. J Gen Microbiol 132: 2781–1785

    CAS  Google Scholar 

  • Favre B, Turian G (1987) Identification of a calcium- and phospholipid-dependent protein kinase (protein kinase C) in Neurospora crassa. Plant Sci 49: 15–21

    Article  CAS  Google Scholar 

  • Fletcher J (1979) Effect of calcium chloride concentration on growth and sporulation of Saprolegnia terrestris. Ann Bot (London) 44: 589–594

    CAS  Google Scholar 

  • Gilroy S, Hughfes WA, Trewavas AJ (1986) The measurement of intracellular calcium levels in protoplasts from higher plant cells. FEBS Lett 199:217–222

    Article  CAS  Google Scholar 

  • Mennucci L, Maia JCC (1979) A calcium-dependent protein activator of mammalian cyclic nucleotide phosphodiesterase from Blastocladiella emersonii. FEBS Lett 99: 39–42

    Article  PubMed  CAS  Google Scholar 

  • Grand RJA, Nairn AC, Perry SV (1980) The preparation of calmodulins from barley (Hordeum sp.) and basidiomycete fungi. Biochem J 181: 755–760

    Google Scholar 

  • Hamlyn PF, Bradshaw RE, Mellon FM, Santiago CM, Wilson JM, Peberdy JF (1981) Efficient protoplast isolation from fungi using commercial enzymes. Enzyme Microb Technol 3: 321–325

    Article  CAS  Google Scholar 

  • Harold RL, Harold FM (1986) Ionophores and cytochalasins moderate branching in Achlya bisexualis. J Gen Microbiol 132: 213–219

    PubMed  CAS  Google Scholar 

  • Hepler PK, Wayne RO (1985) Calcium and plant development. Annu Rev Plant Physiol 36: 397–439

    Article  CAS  Google Scholar 

  • Hetherington AM, Trewavas A (1984) Activation of pea membrane protein kinase by calcium ions. Planta 161: 409–417

    Article  CAS  Google Scholar 

  • Hetherington AM, Blowers D, Trewavas A (1986) Calcium/calmodulin dependent membrane bound protein kinase. In: Trewavas AJ (ed) Molecular and cellular aspects of calcium in plant development. NATO AS I Ser. Series A, Life Sci, vol 104. Plenum, New York London, pp 123–131

    Google Scholar 

  • Hirata M, Sasaguri T, Hamachi T, Hashimoto KM, Kukita M, Koga T (1985) Irreversible inhibition of Ca2+ release in saponin-treated macrophages by the photoaffinity derivative of inositol-1,4,5- trisphosphate. Nature (London) 317: 723–725

    Article  CAS  Google Scholar 

  • Hubbard M, Bradley M, Sullivan P, Shepherd M, Forrester I (1982) Evidence of the occurrence of calmodulin in the yeasts Candida albicans and Saccharomyces cerevisiae. FEBS Lett 317: 85–88

    Article  Google Scholar 

  • Janssens PMW (1987) Did vertebrate signal transduction mechanisms originate in eukaryotic microbes? Trends Biochem Sci 12: 456–459

    Article  CAS  Google Scholar 

  • Kauss H (1987) Some aspects of calcium–dependent regulation in plant metabolism. Annu Rev PI Physiol 78: 47–72

    Article  Google Scholar 

  • Keith CH, Ratan R, Maxfield FR, Bajer A, Shelanski ML (1985) Local cytoplasmic calcium gradients in living mitotic cells. Nature (London) 316: 848–850

    Article  CAS  Google Scholar 

  • Klebs G (1898) Zur Physiologie der Fortpflanzung einiger Pilze. Jahrb Wiss Bot 32: 1–70

    Google Scholar 

  • Lester RL, Steiner MR (1968) The occurrence of diphosphoinositide and triphosphoinositide in Saccharomyces cerevisiae. J Biol Chem 243: 4889–4893

    PubMed  CAS  Google Scholar 

  • Leung PC, Taylor WA, Wang JH, Tipton CL (1985) Röle of calmodulin inhibition in the mode of action of ophiobolin A. Plant Physiol 77: 303–308

    Article  PubMed  CAS  Google Scholar 

  • Londesborough J, Nuutinen M (1987) Ca2+/calmodulin–dependent protein kinase in Saccharomyces cerevisiae. FEBS Lett 219: 249–253

    Article  PubMed  CAS  Google Scholar 

  • McCormack JG, Denton RM (1981) A comparative study of the regulation by Ca2+ of the activation of the 2-oxoglutarate dehydrogenase complex and NAD+-isocitrate dehydrogenase from a variety of sources. Biochem J 196: 619–624

    PubMed  CAS  Google Scholar 

  • Means AR, Dedman JR (1980) Calmodulin — an intracellular calcium receptor. Nature (London) 285: 73–77

    Article  CAS  Google Scholar 

  • Meyer WL, Fischer WH, Krebs EG (1964) Activation of skeletal muscle Phosphorylase β-kinase by Ca2+. Biochemistry 3: 1033–1039

    Article  PubMed  CAS  Google Scholar 

  • Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415: 81–147

    PubMed  CAS  Google Scholar 

  • Muthukumar G, Nickerson AW, Nickerson KW (1987) Calmodulin levels in yeasts and filamentous fungi. FEMS Microbiol Lett 41: 253–255

    Article  CAS  Google Scholar 

  • Nishikuza Y (1984) Turnover of inositol phospholipids and signal transduction. Science 225: 1365–1370

    Article  Google Scholar 

  • Pall ML (1981) Adenosine 3′,5′-phosphate in fungi. Microbiol Rev 45: 462–480

    PubMed  CAS  Google Scholar 

  • Pitt D, Barnes JC (1987) Hexose transport during calcium induced conidiation in Penicillium notatum. Trans Br Mycol Soc 89: 859–865

    Article  Google Scholar 

  • Pitt D, Mosley MJ (1985 a) Enzymes of gluconate metabolism and glycolysis in Penicillium notatum. Antonie Leeuwenhoek Microbiol 51: 353–364

    Article  CAS  Google Scholar 

  • Pitt D, Mosley MJ (1985 b) Pathways of glucose catabolism and the origin and metabolism of pyruvate during calcium-induced conidiation of Penicillium notatum. Antonie Leeuwenhoek Microbiol 51: 365–384

    Article  CAS  Google Scholar 

  • Pitt D, Mosley MJ (1986) Oxidation of carbon sources via the tricarboxylic acid cycle during calcium-induced conidiation of Penicillium notatum. Antonie Leeuwenhoek Microbiol 52: 467–482

    Article  CAS  Google Scholar 

  • Pitt D, Poole PC (1981) Calcium–induced conidiation in Penicillium notatum in submerged culture. Trans Br Mycol Soc 76: 219–230

    Article  CAS  Google Scholar 

  • Pitt D, Ugalde UO (1984) Calcium in fungi. Plant Cell Environ 7: 467–475

    Article  CAS  Google Scholar 

  • Poovaiah BW, Reddy ASN, McFadden J J (1987) Calcium messenger system: Rôle of protein phosphorylation and inositol biphospholipids. Physiol Plant 69: 569–573

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen H, Barrett PQ (1984) Calcium messenger system: An integrated view. Physiol Rev 64: 938–984

    PubMed  CAS  Google Scholar 

  • Rasmussen H, Zawalich W, Kojima J (1985) Ca2+ and cAMP in the regulation of cell function. In: Marme D (ed) Calcium and cell physiology. Springer, Berlin Heidelberg New York Tokyo, pp 3–14

    Google Scholar 

  • Rincon M, Boss WF (1987) myo-inositol trisphosphate mobilises calcium from fusogenic carrot ( Daucus carota L.) protoplasts. Plant Physiol 83: 395–398

    Article  PubMed  CAS  Google Scholar 

  • Rink J, Pozzan T (1985) Using Quin 2 in cell suspensions. Cell Calcium 6: 133–144

    Article  PubMed  CAS  Google Scholar 

  • Roufogalis BD (1982) Specificity of trifluoperazine and related phenothiazines for calcium-binding proteins. In: Cheung WY (ed) Calcium and cell function, vol 3. Academic Press, London New York, pp 130–159

    Google Scholar 

  • Smith JE, Berry DR (1976) The filamentous fungi. Biosynthesis and metabolism, vol 2. Arnold, London

    Google Scholar 

  • Trewavas A (1976) Post-translational modification of proteins by phosphorylation. Annu Rev Plant Physiol 27: 349–374

    Article  CAS  Google Scholar 

  • Tsien RY, Pozzan T, Rink TJ (1982) Calcium homeostasis in intact lymphocytes: Cytoplasmic free calcium monitored with a new intracellularly trapped fluorescent indicator. J Cell Biol 94: 325–334

    Article  PubMed  CAS  Google Scholar 

  • Tyers M, Harley CB (1986) Ca2+ and phorbol ester synergistically induce HL-60 differentiation. FEBS Lett 206: 99–105

    Article  PubMed  CAS  Google Scholar 

  • Ugalde UO, Pitt D (1983) Morphology and calcium-induced conidiation of Penicillium cyclopium in submerged culture. Trans Br Mycol Soc 80: 319–325

    Article  Google Scholar 

  • Ugalde UO, Pitt D (1984) Subcellular sites of calcium accumulation and relationships with conidiation in Penicillium cyclopium. Trans Br Mycol Soc 83: 547–555

    Article  CAS  Google Scholar 

  • Ugalde UO, Pitt D (1986) Calcium uptake kinetics in relation to conidiation in submerged cultures of Penicillium cyclopium. Trans Br Mycol Soc 87: 199–203

    Article  CAS  Google Scholar 

  • Veluthambi K, Poovaiah BW (1984) Calcium-promoted protein phosphorylation in plants. Science 223: 167–169

    Article  PubMed  CAS  Google Scholar 

  • Weete JD (1974) Fungal lipid biochemistry. Plenum, New York London

    Google Scholar 

  • Wessels JGH (1986) Cell wall synthesis in apical growth. Int Rev Cytol 104:37–79

    Article  CAS  Google Scholar 

  • Williamson RE (1981) Free Ca2+ concentration in the cytoplasm: A regulator of plant cell function. Physiol Plant 12: 45–48

    Google Scholar 

  • Williamson RE, Ashley CC (1982) Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature (London) 296: 647–651

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pitt, D., Kaile, A. (1990). Transduction of the Calcium Signal with Special Reference to Ca2+-Induced Conidiation in Penicillium notatum . In: Kuhn, P.J., Trinci, A.P.J., Jung, M.J., Goosey, M.W., Copping, L.G. (eds) Biochemistry of Cell Walls and Membranes in Fungi. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74215-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74215-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74217-0

  • Online ISBN: 978-3-642-74215-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics