Importance and Role of Sterols in Fungal Membranes

  • H. Vanden Bossche


The basic role of biomembranes is to provide a barrier between a cell or organelle and its environment and at the same time to serve as a matrix for the association of proteins with lipids (Gibbons et al. 1982) or, as pointed out by Lewis Thomas (1974), “it takes a membrane to make sense out of disorder”. In these membranes, sterols play a major role both architecturally and functionally. The most common membrane sterol in animals is cholesterol (Fig. 1).


Sterol Synthesis Ergosterol Biosynthesis Fungal Membrane Ergosterol Synthesis Methylococcus Capsulatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams AEM, Pringle JR (1984) Relationship of aetin and tubulin distribution to bud growth in wildtype and morphogenetic-mutant Saccharomyces cerevisiae. J Cell Biol 98: 934–945PubMedCrossRefGoogle Scholar
  2. Anderson JM, Soll DR (1986) Differences in actin localization during bud and hypha formation in the yeast Candida albicans. J Gen Microbiol 132: 2035–2047PubMedGoogle Scholar
  3. Anding C, Rohmer M, Ourison G (1976) Nonspecific biosynthesis of hopane triterpenes in a cell-free system from Acetobacter rancens. J Am Chem Soc 98: 1274–1275PubMedCrossRefGoogle Scholar
  4. Andreason AA, Stier SJB (1953) Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in defined medium. J Cell Comp Physiol 41: 23–26CrossRefGoogle Scholar
  5. Barton DHR, Corrie JET, Widdowson DA, Bard M, Woods RA (1974) Biosynthetic implications of the sterol content of ergosterol-deficient mutants of yeast. JCS Chem Commun 30–31Google Scholar
  6. Barton DHR, Jarman TR, Watson KC, Widdowson DA, Boar RB, Damps K (1975) Investigations on the biosynthesis of steroids and terpenoids. XII. Biosynthesis of β-hydroxy-triterpenoids and β-hydroxy-steroids from 3S-2,3-epoxide-2,3-dihydrosqualene. J Chem Soc Perkin Trans (I):1134–1138CrossRefGoogle Scholar
  7. Barug D, Samson RA, Kerkenaar A (1983) Microscopic studies of Candida albicans and Torulopsis glabrata after in vitro treatment with bifonazole. Arzneim Forsch 33: 528–537Google Scholar
  8. Berman JD, Goad LJ, Black DH, Holz Jr GG (1986) Effects of ketoconazole on sterol synthesis by Leishmania mexicana mexicana amastigotes in murine macrophage tumor cells. Mol Biochem Parasit 20: 85–92CrossRefGoogle Scholar
  9. Bloch KE (1983) Sterol structure and membrane function. Crit Rev Biochem 14: 47–92CrossRefGoogle Scholar
  10. Borgers M (1988) Ultrastructural correlates of antimycotic treatment. In: McGinnis MR (ed) Current topics in medical mycology, vol 2. Springer, Berlin Heidelberg New York Tokyo, pp 1–39Google Scholar
  11. Borelli D (1987) A clinical trial of itraconazole in the treatment of deep mycoses and leishmaniasis. Rev Inf Dis 9:(Suppl 1):S 57–S 63CrossRefGoogle Scholar
  12. Bouvier P, Rohmer M, Benveniste P, Ourisson G (1976) Δ 8(14)-steroids in the bacterium Methylococcus capsulatus. Biochem J 159: 267–271PubMedGoogle Scholar
  13. Buttke TM, Bloch K (1980) Comparative responses of the yeast mutant strain GL 7 to lanosterol, cycloartenol, and cyclolaudenol. Biochem Biophys Res Commun 92: 229–236PubMedCrossRefGoogle Scholar
  14. Cabib E, Kang MS, Bowers B, Elango N, Mattia E, Slater MI, Au-Young J (1984) Chitin synthesis in yeast, a vectorial process in the plasma membrane. In: Nombela C (ed) Microbial cell wall synthesis and autolysis. Elsevier, Amsterdam, pp 91–100Google Scholar
  15. Chanderbhan R, Noland BJ, Scallen TJ, Vahouny GV (1982) Sterol carrier protein2. Delivery of cholesterol from adrenal lipid droplets to mitochondria for pregnenolone synthesis. J Biol Chem 257: 8928–8934PubMedGoogle Scholar
  16. Chen HW, Heiniger H-J, Kandutsch AA (1975) Relationship between sterol synthesis and DNA synthesis in phytohemagglutinin-stimulated mouse lymphocytes. Proc Natl Acad Sci USA 72: 1950–1954PubMedCrossRefGoogle Scholar
  17. Chen HW, Heiniger H-J, Kandutsch AA (1978) Alteration of 86Rb+ influx and efflux following depletion of membrane sterol in L-cells. J Biol Chem 253: 3180–3185PubMedGoogle Scholar
  18. Chen HW, Leonard DA, Fischer RT, Trzaskos JM (1988) A mammalian mutant cell lacking detectable lanosterol 14α-methyldemethylase activity. J Biol Chem 263: 1248–1254PubMedGoogle Scholar
  19. Chiew YY, Sullivan PA, Shepherd MG (1982) The effects of ergosterol and alcohols on germ-tube formation and chitin synthase in Candida albicans. Can J Biochem 60: 15–20PubMedCrossRefGoogle Scholar
  20. Cooper RA, Strauss JF III (1984) Regulation of cell membrane cholesterol. In: Shinitzky M (ed) Physiology of membrane fluidity, vol 1. CRC Press, Boca Raton, pp 73–97Google Scholar
  21. Cornell R, Grove GL, Rothblat GH, Horwitz AF (1977) Lipid requirement for cell cycling. The effect of selective inhibition of lipid synthesis. Exp Cell Res 109: 299–307PubMedCrossRefGoogle Scholar
  22. Cuthbert JA, Lipsky PE (1980) Sterol metabolism and lymphocyte function: Inhibition of endogenous sterol biosynthesis does not prevent mitogen-induced human T-lymphocyte activation. J Immunol 124: 2240–2246PubMedGoogle Scholar
  23. Dahl JS, Dahl CE (1985) Stimulation of cell proliferation and polyphosphoinositide metabolism in Saccharomyces cerevisiae GL7 by ergosterol. Biochem Biophys Res Commun 133: 844–850PubMedCrossRefGoogle Scholar
  24. Dawidowicz EA (1987) Dynamics of membrane lipid metabolism and turnover. Annu Rev Biochem 56: 43–61PubMedCrossRefGoogle Scholar
  25. Demel RA (1987) Structural and dynamic aspects of membrane lipids. In: Stumpf PK, Mudd JB, Nes WD (eds) The metabolism, structure, and function of plant lipids. Plenum, New York London, pp 145–152Google Scholar
  26. Demel RA, De Kruyff B (1976) The function of sterols in membranes. Biochim Biophys Acta 457: 109–132PubMedGoogle Scholar
  27. De Nollin S, Borgers M (1975) Scanning electron microscopy of Candida albicans after in vitro treatment with miconazole. Antimicrob Agents Chemother 7: 704–711PubMedGoogle Scholar
  28. De Nollin S, Van Belle H, Goosens F, Thoné F, Borgers M (1977) Cytochemical and biochemical studies of yeasts after in vitro exposure to miconazole. Antimicrob Agents Chemother 11: 500–513PubMedGoogle Scholar
  29. Ferguson KA, Davis FM, Conner RL, Landrey JR, Mallory FB (1975) Effect of sterol replacement in vivo on the fatty acid composition of Tetrahymena. J Biol Chem 250: 6998–7005PubMedGoogle Scholar
  30. Freter CE, Landenson RC, Silbert DF (1979) Membrane phospholipids alterations in response to sterol depletion of LM cells. J Biol Chem 254: 6909–6916PubMedGoogle Scholar
  31. Georgopapadakou NH, Dix BA, Smith SA, Freudenberger J, !Funke PT (1987) Effect of antifungal agents on lipid biosynthesis and membrane integrity in Candida albicans. Antimicrob Agents Chemother 31: 46–51PubMedGoogle Scholar
  32. Gibbons GF, Mitropoulos KA, Myant NB (1982) Biochemistry of cholesterol. Elsevier Biomed Press, AmsterdamGoogle Scholar
  33. Hall PF (1985) The role of the cytoskeleton in the supply of cholesterol for steroidogenesis. In: Strauss JF, Menon KMJ (eds) Lipoprotein and cholesterol metabolism in steroidogenic tissues. Stickley, Washington, pp 207–217Google Scholar
  34. Harold RL, Harold FM (1986) Ionophores and cytochalasin modulate branching in Achlya bisexualis. J Gen Microbiol 132: 213–219PubMedGoogle Scholar
  35. Hart DT, Lauwers WJ, Willemsens G, Vanden Bossche H, Opperdoes FR (1989) Perturbation of sterol biosynthesis by itraconazole and retoconazole in Leishmania mexicana mexicana infected macrophages. Mol Biochem Parasit 33:123–134CrossRefGoogle Scholar
  36. Heath IB (1987) Preservation of a labile cortical array of actin filaments in growing hyphal tips of the fungus Saprolegnia ferax. Eur J Cell Biol 44: 10–16Google Scholar
  37. Heiniger H-J, Kandutsch AA, Chen HW (1976) Depletion of L-cell sterol depresses endocytosis. Nature (London) 263:515–517CrossRefGoogle Scholar
  38. Henry SA (1982) Membrane lipids of yeast: Biochemical and genetic studies. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces. Metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 101–158Google Scholar
  39. Höfer M, Huh H, Ktinemund A (1983) Membrane potential and cation permeability. A study with a nystatin-resistant mutant of Rhodotorula gracilis (Rhodosporidum toruloides). Biochim Biophys Acta 735: 211–214PubMedCrossRefGoogle Scholar
  40. Holz GG (1985) Lipids of leishmanias. In: Chang K-P, Bray RS (eds) Leishmaniasis. Elsevier, Amsterdam, pp 79–92Google Scholar
  41. Kandutsch AA, Chen HW, Heiniger H-J (1978) Biological activity of some oxygenated sterols. Science 201: 498–501PubMedCrossRefGoogle Scholar
  42. Kawasaki S, Ramgopal M, Chin J, Bloch K (1985) Sterol control of the phosphatidylethanolamine-phosphatidylcholine conversion in yeast mutant GL7. Proc Natl Acad Sci USA 82: 5715–5719PubMedCrossRefGoogle Scholar
  43. Kerkenaar A, Barug D (1984) Fluorescence microscope studies of Ustilago maydis and Penicilliun italicum after treatment with imazalil or fenpropimorph. Pestic Sci 16: 199–205CrossRefGoogle Scholar
  44. Kilmartin JM, Adams AEM (1984) Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J Cell Biol 98: 922–933PubMedCrossRefGoogle Scholar
  45. Künemund A, Höfer M (1983) Passive fluxes of K+ and H+ in wild strain and nystatin-resistant mutant of Rhodotorula gracilis (ATCC 26194). Biochim Biophys Acta 735: 203–210PubMedCrossRefGoogle Scholar
  46. Lees ND, Kemple MD, Barbuch RJ, Smith MA, Bard M (1984) Differences in membrane order parameter and antibiotic sensitivity in ergosterol-producing strains of Saccharomyces cerevisiae. Biochim Biophys Acta 776: 105–112CrossRefGoogle Scholar
  47. Le Marchand Y, Singh A, Patzelt C, Orci L, Jeanrenaud B (1975) In vivo and in vitro evidences for a role of microtubules in the secretory processes of liver. In: Borgers M, De Brabander M (eds) Microtubules and microtubule inhibitors. North-Holland Publishing Company, Amsterdam, pp 153–164Google Scholar
  48. Lewis TA, Rodriguez RJ, Parks LW (1987) Relationship between intracellular sterol content and sterol esterification and hydrolysis in Saccharomyces cerevisiae. Biochim Biophys Acta 921: 205–212PubMedGoogle Scholar
  49. Lopez-Romero E, Monzon E, Ruiz-Herrera J (1985) Sterol composition of chitosomes from yeast cells of Mucor rouxii: comparison with whole cells. FEMS Microbiol Lett 30: 369–372CrossRefGoogle Scholar
  50. Lorenz RT, Rodriguez RJ, Lewis TA, Parks LW (1986) Characteristics of sterol uptake in Saccharomyces cerevisiae. J Bacteriol 167: 981–985PubMedGoogle Scholar
  51. Low C, Rodriguez RJ, Parks LW (1985) Modulation of yeast plasma membrane composition of a yeast sterol auxotroph as a function of exogenous sterol. Arch Biochem Biophys 240: 530–538PubMedCrossRefGoogle Scholar
  52. Lynch DV, Steponkus PL (1987) Plasma membrane alterations following cold acclimation: Possible relevance to freeze tolerance. In: Stumpf PK, Mudd JB, Nes WD (eds) The metabolism, structure, and function of plant lipids. Plenum, New York London, pp 213–215Google Scholar
  53. Marichal P, Gorrens J, Vanden Bossche H (1985) The action of itraconazole and ketoconazole on growth and sterol synthesis in Aspergillus fumigatus and Aspergillus niger. Sabouraudia: J Med Vet Mycol 23: 13–21CrossRefGoogle Scholar
  54. Mercer EI (1984) The biosynthesis of ergosterol. Pestic Sci 15: 133–155CrossRefGoogle Scholar
  55. Morpurgo G, Serlupi-Crescenzi G, Tecce G, Valente F, Venettacci D (1964) Influence of ergosterol on the physiology and the ultra-structure of Saccharomyces cerevisiae. Nature (London) 201: 897–899CrossRefGoogle Scholar
  56. Nes WR (1984) Uniformity vs. diversity in the structure, biosynthesis, and function of sterols. In: Nes WR, Fuller G, Tsai L-S (eds) Isopentenoids in plants biochemistry and function. Dekker, New York Basel, pp 325–347Google Scholar
  57. Nes WR, Hanners PK, Parish EJ (1986) Control of fungal sterol C-24 transalkylation: Importance to developmental regulation. Biochem Biophys Res Commun 139: 410–415PubMedCrossRefGoogle Scholar
  58. Novick P (1985) Intracellular transport mutants of yeast. TIBS (November): 432–434Google Scholar
  59. Novick P, Botstein D (1985) Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell 40: 405–416PubMedCrossRefGoogle Scholar
  60. Nozawa Y, Morita T (1986) Molecular mechanisms of antifungal agents associated with membrane ergosterol. Dysfunction of membrane ergosterol and inhibition of ergosterol biosynthesis. In: Iwata K, Vanden Bossche H (eds) In vitro and in vivo evaluation of antifungal agents. Elsevier, Amsterdam, pp 111–122Google Scholar
  61. Oldfield E, Chapman D (1972) Dynamics of lipids in membranes: Heterogeneity and the role of cholesterol. FEBS Lett 23: 285–297PubMedCrossRefGoogle Scholar
  62. Osawa S, Betz G, Hall PF (1984) Role of actin in the responses of adrenal cells to ACTH and cyclic AMP: inhibition by DNase. J Cell Biol 99: 1335–1342PubMedCrossRefGoogle Scholar
  63. Ourisson G, Albrecht P, Rohmer M (1982) Predictive microbial biochemistry — from molecular fossils to procaryotic membranes. TIBS (July): 236–239Google Scholar
  64. Parks LW (1978) Metabolism of sterols in yeast. CRC Crit Rev Microb 6: 301–341CrossRefGoogle Scholar
  65. Parks LW, Bottema DK, Rodriguez RJ (1984) Physical and enzymatic function of ergosterol in fungal membranes. In: Nes WD, Fuller G, Tsai K-S (eds) Isopentenoids in plants. Biochemistry and function. Dekker, New York Basel, pp 433–452Google Scholar
  66. Parks LW, Bottema DK, Rodriguez RJ, Lewis TA (1985) Yeast mutants as tools for the study of sterol metabolism. Methods Enzymol 111: 333–345PubMedCrossRefGoogle Scholar
  67. Parks LW, Rodriguez RJ, Low C (1986) An essential fungal growth factor derived from ergosterol: a new end product of sterol biosynthesis in fungi? Lipids 21: 89–91PubMedCrossRefGoogle Scholar
  68. Pesti M, Campbell JM, Peberdy JF (1981) Alteration of ergosterol content and chitin synthase activity in Candida albicans. Curr Microbiol 5: 187–190CrossRefGoogle Scholar
  69. Pinto WJ, Lozano R, Sekula BC, Nes WR (1983) Stereochemically distinct roles for sterol in Saccharomyces cerevisiae. Biochem Biophys Res Commun 122: 47–54CrossRefGoogle Scholar
  70. Pratt HP, Fitzgerald PA, Saxon A (1977) Synthesis of sterol and phospholipid induced by the interaction of phytohemagglutinin and other mitogens with human lymphocytes and their relation to blastogenesis and DNA synthesis. Cell Immun 32: 160–170CrossRefGoogle Scholar
  71. Prince RC (1987) Hopanoids: the world’s most abundant biomolecules? TIBS (December): 455–456Google Scholar
  72. Ragsdale NN (1975) Specific effects of triarimol on sterol biosynthesis in Ustilago maydis. Biochim Biophys Acta 380: 81–96PubMedGoogle Scholar
  73. Ragsdale NN, Sisler HD (1972) Mode of action of triarimol on sterol biosynthesis in Ustilago maydis. Biochim Biophys Acta 380: 81–96Google Scholar
  74. Rajan VP, Menon KMJ (1985) Role of microtubules in lipoprotein transport in cultured rat luteal cells. In: Strauss JF, Menon KMJ (eds) Lipoprotein and cholesterol metabolism in steroidogenic tissues. Stickley, Washington, pp 197–200Google Scholar
  75. Rodriguez RJ, Parks LW (1983) Structural and physiological features of sterols necessary to satisfy bulk membrane and sparking requirements in yeast auxotrophs. Arch Biochem Biophys 225: 861–871PubMedCrossRefGoogle Scholar
  76. Rodriguez RJ, Taylor FR, Parks LW (1982) A requirement for ergosterol to permit growth of yeast sterol auxotrophs on cholestanol. Biochem Biophys Res Commun 106: 435–441PubMedCrossRefGoogle Scholar
  77. Rodriguez RJ, Low C, Bottema CDK, Parks LW (1985) Multiple functions for sterols in Saccharomyces cerevisiae. Biochim Biophys Acta 837: 336–343PubMedGoogle Scholar
  78. Rohmer M, Bouvier P, Ourisson G (1979) Molecular evolution of biomembranes: structural equivalents and phylogenic precursors of sterols. Proc Natl Acad Sci USA 76: 847–851PubMedCrossRefGoogle Scholar
  79. Rohmer M, Bouvier P, Ourisson G (1980) Non-specific lanosterol and hopanoid biosynthesis from the bacterium Methylococcus capsulatus. Eur J Biochem 112: 557–560PubMedCrossRefGoogle Scholar
  80. Ruiz-Herrera J (1985) Dimorphism in Mucor species with emphasis on M. rouxii and M. bacilliformis. In: Szaniszlo PJ, Harris JL (eds) Fungal dimorphism. Plenum, New York London, pp 361–384Google Scholar
  81. Sancholle M, Weete JD, Montant C (1984) Effects of triazoles on fungi: I. Growth and cellular permeability. Pestic Biochem Physiol 21: 31–44CrossRefGoogle Scholar
  82. Scallen TJ, Vahouny GV (1985) The participation of sterol carrier proteins in cholesterol biosynthesis, utilization and intracellular transfer. In: Strauss JF, Menon KMJ (eds) Lipoprotein and cholesterol metabolism in steroidogenic tissues. Stickley, Washington, pp 219–236Google Scholar
  83. Scallen TJ, Schuster MW, Dhar AK (1971) Evidence for a noncatalytic carrier protein in cholesterol biosynthesis. J Biol Chem 246: 224–230PubMedGoogle Scholar
  84. Scallen TJ, Noland BJ, Gavey KL, Bass NM, Ockner RK, Chandebhan R, Vahouny GV (1985) Sterol carrier protein 2 and fatty acid-binding protein. J Biol Chem 260: 4733–4739PubMedGoogle Scholar
  85. Servouse M, Karst F (1986) Regulation of early enzymes of ergosterol biosynthesis in Saccharomyces cerevisiae. Biochem J 240: 541–547PubMedGoogle Scholar
  86. Sisler HD, Ragsdale NN (1984) Biochemical and cellular aspects of the antifungal action of ergosterol biosynthesis inhibitors. In: Trinci APJ, Ryley JF (eds) Mode of action of antifungal agents. Cambridge Univ Press, Cambridge, pp 257–282Google Scholar
  87. Sisler HD, Walsh R (1981) Mutant of Ustilago maydis genetically blocked in sterol C-14 demethylation. Neth J Plant Pathol 87: 235–236Google Scholar
  88. Sisler HD, Walsh RC, Ziogas BN (1983) Ergosterol biosynthesis: a target of fungitoxic action. In: Matsunaka S, Hutson DH, Murphy SD (eds) Pesticide chemistry: Human welfare and the environment, vol 3. Mode of action, metabolism and toxicology. Pergamon, New York, pp 129–134Google Scholar
  89. Smedley-MacLean I, Thomas EM (1920) XL. The nature of yeast fat. Biochem J 14: 483–493Google Scholar
  90. Soll DR (1985) Candida albicans. In: Szaniszlo PJ, Harris JL (eds) Fungal dimorphism. Plenum, New York London, pp 167–195Google Scholar
  91. Stokes JL (1971) Influence of temperature on the growth and metabolism of yeasts. In: Rose AH, Harrison JS (eds) The yeasts, vol 2. Academic Press, London New York, pp 119–134Google Scholar
  92. Strittmatter P, Spatz L, Corcoran D, Rogers M J, Setlow B, Redline R (1974) Purification and properties of rat liver microsomal coenzyme A desaturase. Proc Natl Acad Sci USA 71: 4565–4569PubMedCrossRefGoogle Scholar
  93. Tamura Y, Yoshida Y, Sato R, Kumaoka H (1976) Fatty acid desaturase system of yeast microsomes. Involvement of cytochrome b5-containing electron-transport chain. Arch Biochem Biophys 175: 284–294PubMedCrossRefGoogle Scholar
  94. Tanret C (1889) Sur un nouveau principe immédiat de l’ergot de seigle, l’ergostérine. CR Acad Sci 108: 98–100Google Scholar
  95. Taylor FR, Parks LW (1980) Adaptation of Saccharomyces cerevisiae to growth on cholesterol: selection of mutants defective in the formation of lanosterol. Biochem Biophys Res Commun 95: 1437–1445PubMedCrossRefGoogle Scholar
  96. Taylor RF (1984) Bacterial triterpenoids. Microbiol Rev 48: 181–198PubMedGoogle Scholar
  97. Thomas L (1974) The lives of a cell — Notes of a biology watcher. Viking Press, New York, p 170Google Scholar
  98. Thompson ED, Bailey RB, Parks LW (1974) Subcellular location of S-adenosylmethionine: Δ24-sterol methyltransferase in Saccharomyces cerevisiae. Biochim Biophys Acta 334: 116–126Google Scholar
  99. Vahouny GV, Dennis P, Chanderbhan R, Fiskum G, Noland BJ, Scallen TJ (1984) Sterol carrier protein2 (SCP2)-mediated transfer of cholesterol to mitochondrial inner membranes. Biochem Biophys Res Commun 122: 509–515PubMedCrossRefGoogle Scholar
  100. Vanden Bossche H (1974) Biochemical effects of miconazole on fungi: I. Effects on the uptake and/or utilization of purines, pyrimidines, nucleosides, amino acids and glucose by Candida albicans. Biochem Pharmacol 23: 887–899PubMedCrossRefGoogle Scholar
  101. Vanden Bossche H (1985) Biochemical targets for antifungal azole derivatives: Hypothesis on the mode of action. In: McGinnis MR (ed) Current topics in medical mycology, vol 1. Springer, Berlin Heidelberg New York Tokyo, pp 313–351Google Scholar
  102. Vanden Bossche H, Willemsens G, Cools W, Cornelissen F, Lauwers WF, Van Cutsem JM (1980) In vitro and in vivo effects of the antimycotic drug ketoconazole on sterol synthesis. Antimicrob Agents Chemother 17: 922–928PubMedGoogle Scholar
  103. Vanden Bossche H, Willemsens G, Cools W, Lauwers WF (1981) Effects of miconazole on the fatty-acid pattern in Candida albicans. Archiv Int Physiol Biochem 89: B134Google Scholar
  104. Vanden Bossche H, Ruysschaert JM, Defriese-Quertain F, Willemsens G, Cornelissen F, Marichal P, Cools W, Van Cutsem J (1982) The interaction of miconazole and ketoconazole with lipids. Biochem Pharmacol 31: 2609–2617PubMedCrossRefGoogle Scholar
  105. Vanden Bossche H, Willemsens G, Cools W, Marichal P, Lauwers W (1983) Hypothesis on the molecular basis of the antifungal activity of N-substituted imidazoles and triazoles. Biochem Soc Trans 11: 665–667PubMedGoogle Scholar
  106. Vanden Bossche H, Lauwers W, Willemsens G, Marichal P, Cornelissen F, Cools W (1984 a) Molecular basis for the antimycotic and antibacterial activity of N-substituted imidazoles and triazoles: the inhibition of isoprenoid biosynthesis. Pestic Sci 15: 188–198CrossRefGoogle Scholar
  107. Vanden Bossche H, Willemsens G, Marichal P (1984 b) Cytochrome P-450 inhibitors at the origin of deteriorated fungal membranes. A summary. In: Nombela C (ed) Microbial cell wall synthesis and autolysis. Elsevier, Amsterdam, pp 307–312Google Scholar
  108. Vanden Bossche H, Willemsens G, Marichal P (1987 a) Anti-Candida drugs — The biochemical basis for their activity. CRC Crit Rev Microb 15: 57–72CrossRefGoogle Scholar
  109. Vanden Bossche H, Marichal P, Gorrens J, Bellens D, Verhoeven H, Coene M-C, Lauwers W, Janssen PAJ ( 1987 b) Interaction of azole derivatives with cytochrome P-450 isozymes in yeast, fungi, plant and mammalian cells. Pestic Sci 21:289–306CrossRefGoogle Scholar
  110. Vanden Bossche H, Marichal P, Geerts H, Janssen PAJ (1988) The molecular basis for itraconazole’s activity against Aspergillus fumigatus. In: Vanden Bossche H, Mackenzie DWR, Cauwenbergh G (eds) Aspergillus and aspergillosis. Plenum, New York London, pp 171–197Google Scholar
  111. Van Gestel J (1986) The vapour phase activity of antifungal compounds: a neglected or a negligible phenomenon? In: Iwata K, Vanden Bossche H (eds) In vitro and in vivo evaluation of antifungal agents. Elsevier, Amsterdam, pp 207–218Google Scholar
  112. Weete JD (1980) Lipid biochemistry. Plenum, New York London, pp 49–95Google Scholar
  113. Weete JD, Sancholle MS, Montant C (1983) Effects of triazoles on fungi: II. Lipid composition of Taphrina deformans. Biochim Biophys Acta 752: 19–29Google Scholar
  114. Weinrauch I, Livshin R, El-On J (1987) Ketoconazole in cutaneous leishmaniasis. Br J Med 117 (5): 666–668Google Scholar
  115. Woods RA (1971) Nystatin-resistant mutants of yeast: Alterations in sterol content. J Bacteriol 108: 69–73PubMedGoogle Scholar
  116. Yamaguchi H (1977) Antagonistic action of lipid components of membranes from C. albicans and various other lipids on two imidazole antimycotics. Antimicrob Agents Chemother 12: 16–25PubMedGoogle Scholar
  117. Yoshida Y (1988) Cytochrome P450 of fungi: Primary target for azole antifungals. In: McGinnis MR (ed) Current topics in medical mycology, vol 2. Springer, Berlin Heidelberg New York Tokyo, pp 389–418Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • H. Vanden Bossche
    • 1
  1. 1.Deptartment of Comparative BiochemistryJanssen Research FoundationBeerseBelgium

Personalised recommendations