Skip to main content

Part of the book series: NATO ASI Series ((ASIH,volume 34))

  • 52 Accesses

Abstract

In mammals the embryo itself is derived from a few founder cells (reviewed in Mintz, 1974) that are specified at an as yet undefined stage before gastrulation. From these progenitors, many distinct cell types develop during the next few days. Their probable number is far greater than the number of described histological cell types. When the embryo progenitor cells are determined the genome has been epigenetically modified. Indeed, the male and female pronuclei display different properties (reviewed in Solter, 1987) due to distinct imprinting that occurs during gametogenesis (McGrath and Solter, 1984; Surani et al., 1984; reviewed in Monk, 1988). Further modifications of the zygotic genome probably occur during the early stages of embryogenesis, probably initiated by interactions between the three partners present at fertilization: the female cytoplasm and the two pronuclei. The relative importance of epigenetic modifications of regions of the chromosomes (by epigenetic, we mean any stably inherited modification of the genetic material such as methylation or special kind of secondary or tertiary configuration of the chromatin) compared to the repertoire of trans modulators in the control of the set of genes expressed in a particular cell is not easy to evaluate. Current hypotheses on the basis of these restrictions of potency involve cell position, cell interaction, cell lineage and timing (reviewed in Pedersen, 1986). Therefore, analysis of gene expression in relation to these parameters is of great interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen ND, Cran DG, Barton SC, Hettle S, Rein W, Surani A (1988) Transgenes as probes for active chromosomal domains in mouse development. Nature 333: 852–855

    Article  PubMed  CAS  Google Scholar 

  • Benoist C, Chambon P (1981) In vivo sequence requirements of the SV40 early promoter region. Nature 290: 304–310

    Article  PubMed  CAS  Google Scholar 

  • Bensaude O, Babinet C, Morange M, Jacob F (1983) Heat shock proteins, first major products of zygotic gene activity in mouse embryo. Nature 305: 331–333

    Article  PubMed  CAS  Google Scholar 

  • Bonnerot C, Rocancourt D, Briand P, Grimber G, Nicolas JF (1987) A ß-galactosidase hybrid protein targeted to nuclei as a marker for developmental studies. Proc Natl Acad Sci USA 84: 6795–6799

    Article  PubMed  CAS  Google Scholar 

  • Bonnerot C, Vernet M, Grimber G, Briand P, Nicolas JF (1989) An unusual maternally derived transcription specificity before activation of the genome in mouse embryos (submitted for publication )

    Google Scholar 

  • Brinster RL, Chen HY, Warren R, Sarthy A, Palmiter RD (1982) Regulation of metallothionein-thymidine kinase fusion plasmids injected into mouse eggs. Nature 296: 39–42

    Article  PubMed  CAS  Google Scholar 

  • Flach G, Johnson MH, Braude PR, Taylor RAS, Bolton VN (1982) The transition from maternal to embryonic control in the 2 cell mouse embryo. EMBO J 1: 681–686

    PubMed  CAS  Google Scholar 

  • Gilboa E, Mitra SW, Goff S, Baltimore D (1979) A detailed model of reverse transcription and tests of crucial aspects. Cell 18: 93–100

    Article  PubMed  CAS  Google Scholar 

  • Goring DR, Rossant J, Clapoff S, Breitman ML, Tsui LC (1987) In situ detection of ß- galactosidase in lenses of transgenic mice with a γ-crystallin/Lac Z gene. Science 235: 456–458

    Article  PubMed  CAS  Google Scholar 

  • Harper MI, Monk M (1983) Evidence for translation of HPRT enzymes on maternal RNA in early mouse embryos. J Embryol Exp Morph 74: 15–28

    PubMed  CAS  Google Scholar 

  • Jakob H, Nicolas JF (1986) Mouse teratocarcinoma cells. Meth Enzymol 151: 66–81

    Article  Google Scholar 

  • Kalderon D, Roberts BL, Richardson WD, Smith AE (1984) A short amino acid sequence able to specify nuclear location. Cell 39: 499–509

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Moores JC, David D, Respess JG, Jolly DJ, Friedmann T (1986) The organization of the human HPRT gene. Nucl Acids Res 14: 3103–3118

    Article  PubMed  CAS  Google Scholar 

  • Kothary R, Clapoff S, Brown A, Campbell R, Peterson A, Rossant J (1988) A transgene containing LacZ inserted into the dystonia locus is expressed in neural tube. Nature 335: 435 437

    Google Scholar 

  • Linney E, Davis B, Overhauser J, Chao E, Fan H (1984) Non function of a Moloney murine leukaemia virus regulatory sequence in F9 embryonal carcinoma cells. Nature 308: 470–472

    Article  PubMed  CAS  Google Scholar 

  • Luskin MB, Pearlman AL, Sanes JR (1988) Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron 1: 635–647

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Salas E, Cupo DY, DePamphilis ML (1988) The need for enhancers is acquired upon formation of a diploid nucleus during early mouse development. Genes & Development 2: 1115 1126

    Google Scholar 

  • McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37: 179 183

    Google Scholar 

  • Monk M (1988) Genomic imprinting. Genes & Development 2: 921 925

    Google Scholar 

  • Nicolas JF, Rubenstein JLR (1987) Retroviral vectors. In: Rodriguez RL, Denhardt DT (eds) Vectors: a survey of molecular cloning vectors and their uses. Butterworth, Stoneham, MA, USA, p 493

    Google Scholar 

  • Nicolas JF, Bonnerot C (1988) Recombinant retrovirus, cell lineage and gene expression in the mouse embryo. In: Cellular factors in development and differentiation - Embryos, teratocarcinomas and differentiated tissues. Alan R Liss, New York, p 125

    Google Scholar 

  • Nolan GP, Fiering S, Nicolas JF, Herzenberg LA (1988) Fluorescence activated cell analysis and sorting of viable mammalian cells based on ß-D-galactosidase activity after transduction of E. Coli LacZ. Proc Natl Acad Sci USA 85: 2603–2607

    Google Scholar 

  • Palmiter RD, Brinster RL (1986) Germ-line transformation of mice. Ann Rev Genet 20: 465–499

    Article  PubMed  CAS  Google Scholar 

  • Parks DR, Lanier LL, Herzenberg LA (1986) In: Weir DM, Herzenberg LA, Blackwell CC, Herzenberg LA (eds) Handbook of experimental immunology, 4th edn. Blackwell, Edinburgh, p 29. 1

    Google Scholar 

  • Pedersen RA (1986) Potency, lineage and allocation in preimplantation embryos. In: Experimental approaches to mammalian embryonic development. Cambridge University Press

    Google Scholar 

  • Price J, Thurlow L (1988) Cell lineage in the rat cerebral cortex: a study using retroviral-mediated gene transfer. Development 104: 473–482

    PubMed  CAS  Google Scholar 

  • Price J, Turner D, Cepko C (1987) Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc Natl Acad Sci USA 84: 156–160

    Article  PubMed  CAS  Google Scholar 

  • Sanes JR, Rubenstein JLR, Nicolas JF (1986) Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J 5: 3133–3142

    PubMed  CAS  Google Scholar 

  • Sawicki JA, Magnuson T, Epstein CJ (1981) Evidence for expression of the paternal

    Google Scholar 

  • genome in the two-cell mouse embryo. Nature 294:450–451

    Google Scholar 

  • Schirm S, Jiricny J, Schaffner W (1987) The SV40 enhancer can be dissected into multiple segments, each with a different cell type specificity. Genes & Development 1: 65–74

    Article  CAS  Google Scholar 

  • Schultz RM (1986) Molecular aspects of mammalian oocyte growth and maturation. In: Experimental approaches to mammalian embryonic development. Cambridge University Press

    Google Scholar 

  • Shih CC, Stoye JP, Coffin JM (1988) Highly preferred targets for retrovirus integration. Cell 53: 531–537

    Article  PubMed  CAS  Google Scholar 

  • Solter D (1987) Inertia of the embryonic genome in mammals. Trends Genet 3: 23–33

    Article  Google Scholar 

  • Surani MAH, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308: 548–550

    Article  PubMed  CAS  Google Scholar 

  • Taylor KD, Piko L (1987) Patterns of mRNA prevalence and expression of B1 and B2 transcripts in early mouse embryos. Development 101: 877–892

    PubMed  CAS  Google Scholar 

  • Ueno K, Hiramoto Y, Hayashi S, Kondoh H (1987) Introduction and expression of recombinant ß-galactosidase genes in cleavage stage mouse embryos. Develop Growth and Differ 30 /1: 61–73

    Article  Google Scholar 

  • Zenke M, Grundstrom T, Matthes H, Wintzerith M, Schatz C, Wildeman A, Chambon P (1986) Multiple sequence motifs are involved in SV40 enhancer function. EMBO J 5: 387 - 397

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nicolas, J.F. et al. (1989). Visualization by nlsLacZ of Gene Activity During Mouse Embryogenesis. In: Lother, H., Dernick, R., Ostertag, W. (eds) Vectors as Tools for the Study of Normal and Abnormal Growth and Differentiation. NATO ASI Series, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74197-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74197-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74199-9

  • Online ISBN: 978-3-642-74197-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics