Phospholipid Localization and Mobility in Plasmodium Infected Erythrocytes

  • J. A. F. Op den Kamp
  • G. Moll
  • A. P. Simões
  • B. Roelofsen
Conference paper
Part of the NATO ASI Series book series (volume 40)


Upon infection of erythrocytes with Plasmodium, the malaria causing parasite, the red cell membrane undergoes a variety of changes. Proteins, encoded by the parasitic DNA are inserted into the membrane (Howard 1988, Hommel and Semoff, 1988), membrane permeability is increased (Tanabe et al, 1983; Sherman, 1979) pores (Ginsburg et al, 1986) are formed, the mobility of phospholipids is increased (Taraschi et al, 1986; Beaumelle et al, 1988; Deguercy et al, 1986; van der Schaft et al, 1987; Moll et al, 1988; Haldar et al, 1989) and the ultrastractural appearance of the cell can be modified by the development of knobs on the membrane surface (Howard, 1988). Recently, a series of studies was undertaken to investigate the fate of the phospholipid complement of the host cell membrane and to establish possible, parasite induced, modifications in the composition as well as the organization of these basic membrane constituents. Here we present a short overview of the most relevant observations. Emphasis will be laid on three aspects of our work: (i) the localization of phospholipids in the membrane of the erythrocyte following infection; (ii) the transfer of phospholipids from the environment into the infected red cell, and (iii) the possible alterations in phospholipid species composition of the host erythrocyte membrane. Central to these studies are observations that parasitised erythrocytes contain, at the final stage of infection, about 6 times as much phospholipid as the non-infected cells (van der Schaft et al, 1987) and that the parasite, although equipped with a complete set of enzymes to synthesize complex phospholipids, cannot synthesize its own fatty acids (Sherman, 1979).


Erythrocyte Membrane Infected Erythrocyte Host Cell Membrane Plasmodium Knowlesi Infected Monkey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beaumelle BD, Vial HJ, Bienvenue A (1988) Enhanced transbilayer mobility in malaria infected erythrocytes. J Cell Physiol 135: 94–100PubMedCrossRefGoogle Scholar
  2. Bevers EM, Comfurius P, van Rijn JLML, Hemker HC and Zwaal RFA (1982) Generation of prothrombin-converting activity and the exposure of phospatidylserine at the outer surface of platelets. Eur J Biochem 122: 429–436PubMedCrossRefGoogle Scholar
  3. Blank ML, Robinson M, Fitzgerald V and Snyder F (1984) Novel quantitative method for determination of molecular species of phospholipids and diglycerides. J Chromatogr 298: 473–482PubMedCrossRefGoogle Scholar
  4. Broekhuyse RM (1969) Quantitative two dimensional thin-layer chromatography of blood phospholipids. Clinica Chimica Acta 23: 457–461CrossRefGoogle Scholar
  5. Deguercy G, Schrevel J, Duportail G, Laustriat G and Kuhry JS (1986) Membrane fluidity changes in P. berghei-infected erythhrocytes, investigated with a specific plasma membrane fluorescent probe. Biochem Int 12: 21–32PubMedGoogle Scholar
  6. De Zeeuw RA, Wysbeek J, Rock RC and Mc Cormick G (1972) Composition of phospholipids in Plasmodium knowlesi membranes and in host erythrocyte membranes. Proc Helminth Soc Wash 39: 412–418Google Scholar
  7. Ginsburg H, Kutner S, Zangwil M and Cabantchik ZI (1986) Selective properties of pores induced in host erythrocyte membrane by Plasmodium falciparum infected cells. Effect of parasite maturation. Biochim Biophys Acta 861: 194–196PubMedGoogle Scholar
  8. Gupta CM, Alam A, Mathur PN and Dutta GP (1982) A new look at the non parisitized erythrocytes in Plasmodium falciparum infected erythrocytes. Nature 299: 259–261PubMedCrossRefGoogle Scholar
  9. Haldar K, de Amorim AF, Cross GAM, (1989) Transport of fluorescent phospholipid analogues from the erythrocyte membrane to the parasite in Plasmodium falciparum infected cells. J Cell Biol 108: 2183–2192PubMedCrossRefGoogle Scholar
  10. Hommel M and Semoff S (1988) Expression and function of erythrocyte associated surface antigens in malaria. Biology of the Cell 64: 183–203PubMedCrossRefGoogle Scholar
  11. Howard RJ (1988) Malarial proteins at the membrane of P. falciparum infected erythrocytes and their involvement in cytoadherence to endothelial cells. Prog Allergy, 41: 98–147PubMedGoogle Scholar
  12. Joshi P, Dutta GP and Gupta CM (1987) An intracellular simian malarial parasite induces stage dependent alterations in membrane phospholipid organization of its host erythrocyte. Biochem J 246: 103–108PubMedGoogle Scholar
  13. Joshi P, Alam A, Chandra R, Puri SK, Gupta CM (1986) Possible basis for membrane changes in non parasitized erythrocytes of malaria infected animals. Biochim Biophys Acta 862: 220–222PubMedCrossRefGoogle Scholar
  14. Joshi P and Gupta CM (1988) Abnormal phospholipid organization in Plasmodium falciparum infected erythrocytes. Brit J Haematol, 68: 255–259CrossRefGoogle Scholar
  15. Kutner S, Breuer WV, Ginsburg H, Aley SB and Cabantchik ZI (1985) Characterization of permeation pathways in the plasma membrane of human erythrocytes infected with early stages of Plasmodium falciparum: association with parasite development. J Cell Physiol 125: 521–527PubMedCrossRefGoogle Scholar
  16. Mc Clean, S, Purdy WC, Kabat A, Sampugna J, de Zeeuw RA and Mc Cormick, G (1976) Analysis of phospholipid composition of Plasmodium knowlesi and Rhesus erythrocyte membranes. Anal Chim Acta 82: 175–185PubMedCrossRefGoogle Scholar
  17. Middelkoop E, Lubin BH, Bevers EM, Op den Kamp, JAF, Comfurius P, Chiu DT- Y, Zwaal RFA, van Deenen, LLM and Roelofsen B (1988) Studies on sickled erythrocytes provide evidence that the asymmetric distribution of phosphatidylserine in the red cell membrane is maintained by both ATP dependent translocation and interaction with membrane skeletal proteins. Biochim Biophys Acta 937: 281–288PubMedCrossRefGoogle Scholar
  18. Middelkoop E, van der Hoek EE, Bevers EM, Comfurius P, Slotboom AJ, Op den Kamp JAF, Lubin BH, Zwaal RFA and Roelofsen B (1989) Involvement of ATP dependent aminophospholipid translocation in maintaining phospholipid asymmetry in diamide treated human erythrocytes. Biochim Biophys Acta, 981: 151–160CrossRefGoogle Scholar
  19. Moll GN, Vial HJ, Ancelin ML, Op den Kamp JAF, Roelofsen B and van Deenen LLM (1988) Phospholipid uptake by Plasmodium knowlesi infected erythrocytes. FEBS Lett 232: 341–346PubMedCrossRefGoogle Scholar
  20. Rock RC, Standefer JC, Cook RF, Little W and Sprinz H (1971c) Lipid composition of Plasmodium knowlesi membranes: comparison of parasites and microsomal subfractions with rhesus erythrocyte membranes. Comp Biochem Physiol 38 B: 425–437CrossRefGoogle Scholar
  21. Rouser G, Fleischer S, Yamamoto A, Fleischer S. (1970) Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5: 494–496PubMedCrossRefGoogle Scholar
  22. Van der Schaft PH, Beaumelle B, Vial HJ, Roelofsen B, Op den Kamp JAF and van Deenen LLM (1987) phospholipid organisation in monkey erytrocytes upon Plasmodium knowlesi infection. Biochim Biophys Acta 901: 1–14PubMedCrossRefGoogle Scholar
  23. Schwartz RS, Olson JA Raventos-Suarez C, Yee M, Heath RH, Lubin B and Nagel RL (1987) Altered plasma membrane phospholipid organization in Plasmodium falciparum infected human erythrocytes. Blood 60: 401–407Google Scholar
  24. Seigneuret M and Devaux PF (1984) ATP dependent asymmetric distribution of spin labeled phospholipids in the erythrocyte membrane: relation to shape changes. Proc Nat Acad Sci USA 81: 3751–3755PubMedCrossRefGoogle Scholar
  25. Sherman J (1979) Biochemistry of Plasmodium. Microbiol Rev 43: 453–495PubMedGoogle Scholar
  26. Tanabe K, Mikkelse RB and Wallach DFH (1982) Calcium transport of Plasmodium chabaudi infected erythrocytes. J Cell Biol 93, 680–684PubMedCrossRefGoogle Scholar
  27. Taraschi TF, Parashar A, Hooks M and Rubin M (1986) Perturbation of red cell membrane structure during intracellular maturation of Plasmodium falciparum. Science 232: 102–104PubMedCrossRefGoogle Scholar
  28. Tilley L Cribier S, Roelofsen B, Op den Kamp JAF and van Deenen LLM (1986) ATP dependent aminophospholipid translocation across the human erythrocyte membrane FEBS Lett 194: 21–27PubMedCrossRefGoogle Scholar
  29. Vial HJ, van der Schaft PH, Beaumelle BD, Thuet MJ, Op den Kamp JAF (1989) Improved isolation of Plasmodium knowlesi infected erythrocyte host cell membrane on polycationic beads. Parasitol Res 75: 419–421PubMedCrossRefGoogle Scholar
  30. Wallach DFH and Conley M (1977) Altered membrane proteins of monkey erythrocytes infected with simian malaria. J Molec Med 2: 119–136Google Scholar
  31. Van der Wiele FChr, Atsma W, Roelofsen B, van Linde M, van Binsbergen, J Radvanyi F, Raykova D, Slotboom AJ and de Haas GH (1988a) 1: site-specific epsilon-NH2 monoacylation of pancreatic phospholipase A2. 2: Transformation of soluble phospholipase A2 into a highly penetrating membrane bound form. Biochemistry 27: 1688–1694CrossRefGoogle Scholar
  32. Van der Wiele FChr, Atsma W, Dijkman R, Schreurs AMM, Slotboom AJ, and de Haas GH, (1988b) Site specific epsilon-NH2 mono-acylation of pancreatic phospholipase A2. Biochemistry 27: 1683–1688CrossRefGoogle Scholar
  33. Yuthavong Y, Wilairat P, Panypan B, Potiwan C and Beale GH (197 9) Alterations in membrane proteins of mouse eruthrocytes infected with different species and strains of malaria parasites. Comp BiochemGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • J. A. F. Op den Kamp
    • 1
  • G. Moll
    • 1
  • A. P. Simões
    • 1
  • B. Roelofsen
    • 1
  1. 1.Centre for Biomembranes and Lipid EnzymologyState University of UtrechtUtrechtThe Netherlands

Personalised recommendations