Influenza Virus Mediated Membrane Fusion: The Identification of Fusion Intermediates Using Modern Cryotechniques

  • Koert N. J. Burger
  • Gerd Knoll
  • Peter M. Frederik
  • Arie J. Verkleij
Part of the NATO ASI Series book series (volume 40)


Higher life-forms have evolved in the course of evolution by virtue of (cellular) compartmentalization. Each cellular compartment (nucleus, endoplasmic reticulum, Golgi, etc..) is surrounded by one or two membranes and has a unique structure and composition along with a unique cellular function. Since most of the constituents of the different compartments are synthesized centrally in the cell, a highly efficient sorting and targeting machinery must exist in order to create and maintain the differences in composition between the individual cellular compartments. An important part of this sorting and targeting machinery is vesicular transport, in which membrane fusion is the key event.


Influenza Virus Membrane Fusion Fracture Face Liposomal Membrane Fusion Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Block MR, Glick BS, Wilcox CA, Wieland FT, Rothman (1988) Purification of an N-ethyl- maleimide-sensitive protein catalyzing vesicular transport. Proc Nad Acad Sci USA 85: 7852–7856CrossRefGoogle Scholar
  2. Blumenthal R (1987) Membrane Fusion. In Current Topics in Membranes and Transport (Klausner RD, Van Renswoude J, Kempf C, eds) Vol 29, pp 203–254. Academic Press OrlandoGoogle Scholar
  3. Burger KNJ, Knoll G, Verkleij AJ (1988) Influenza virus-model membrane interaction. A morphological approach using modem cryotechniques. Biochim Biophys Acta 939: 89–101PubMedCrossRefGoogle Scholar
  4. De Kruijff B, Cullis PR, Verkleij AJ, Hope MJ, Van Echteid CJA, Taraschi TF (1985a) Lipid polymorphism and membrane function. In The Enzymes of Biological Membranes (Martonosi AN, ed) pp 131–204. Plenum Press New YorkGoogle Scholar
  5. De Kruijff B, Cullis PR, Verkleij AJ, Hope MJ, Van Echteid CJA, Taraschi TF, Van Hoogevest P, Killian JA, Rietveld A, Van Der Steen ATM (1985b). In Progress in Protein-Lipid Interactions (Watts A, de Pont JJHHM, eds) pp 89–142. Elsevier AmsterdamGoogle Scholar
  6. Edwards HH, Mueller TJ, Morrison M (1979) Distribution of transmembrane polypeptides in freeze fracture. Science 203: 1343–1346PubMedCrossRefGoogle Scholar
  7. Frederik PM, Stuart MCA, Verkleij AJ (1989) Intermediary structures during membrane fusion as observed by cryo-electron microscopy. Biochim Biophys Acta 979: 275–278PubMedCrossRefGoogle Scholar
  8. Gething MJ, Doms RW, York D, White J (1986) Studies on the mechanism of membrane fusion: site-specific mutagenesis of the hemagglutinin of influenza virus. J Cell Biol 102:11–23PubMedCrossRefGoogle Scholar
  9. Gething MJ, Henneberry J, Sambrook J (1988) Fusion activity of the hemagglutinin of influenza virus. In Current Topics in Membranes and Transport (Düzgünes N, Bronner F, eds) Vol 32, pp 337–364. Academic Press San DiegoGoogle Scholar
  10. Heuser JE, Reese TS, Dennis MJ, Jan Y, Jan L, Evans L (1979) Synaptic vesicle exocytosiscaptured by quick freezing and correlated with quantal transmitter release. J Cell Biol 81: 275–300PubMedCrossRefGoogle Scholar
  11. Hols H, Sixma JJ, Leunissen-Bijvelt J, Verkleij AJ (1985) Freeze-fracture studies on human blood platelets activated by thrombin using rapid freezing. Trombosis and Haemostasis 54: 574Google Scholar
  12. Knoll G, Burger KNJ, Bron R, van Meer G, Verkleij AJ (1988) Fusion of liposomes with the plasma membrane of epithelial cells: fate of incorporated lipids as followed by freeze fracture and autoradiography of plastic sections. J. Cell Biol 107: 2511–2521PubMedCrossRefGoogle Scholar
  13. Knoll G, Verkleij AJ, Plattner H (1987) Cryofixation of dynamic processes in cells and organelles. In Cryotechniques in Biological Electron Microscopy (Steinbrecht RA, Zierold K, eds) pp 258–271. Springer Verlag BerlinCrossRefGoogle Scholar
  14. Lindblom G, Rilfors L (1989) Cubic phases and isotropic structures formed by membrane lipids-possible biological relevance. Biochim Biophys Acta 988: 221–256Google Scholar
  15. Lucy JA (1984) Do hydrophobic sequences cleaved from cellular polypeptides induce membrane fusion reaction in vivo? FEBS 166: 223–231CrossRefGoogle Scholar
  16. Maeda T, Kawasaki K, Ohnishi SI (1981) Interaction of influenza virus hemagglutinin with target membrane lipids is a key step in virus-induced hemolysis and fusion at pH 5.2. Proc Natl Acad Sci USA 78: 4133–4137PubMedCrossRefGoogle Scholar
  17. Matlin KS, Reggio H, Helenius A, Simons K (1981) Infectious entry pathway of influenza virus in a canine kidney cell line. J Cell Biol 91: 601–613PubMedCrossRefGoogle Scholar
  18. Miller RG (1980) Do ‘lipidic particles’ represent intermembrane attachment sites? Nature 287: 166–168PubMedCrossRefGoogle Scholar
  19. Rand RP, Parsegian VA (1986) Mimicry and mechanism in phospholipid models of membrane fusion. Ann Rev Physiol 48: 201–212CrossRefGoogle Scholar
  20. Schmidt A, Patzak A, Lingg G, Winkler H, Plattner H (1983) Membrane events in adrenal chromaffin cells during exocytosis: a freeze-etching analysis after rapid cryofixation. Eur J Cell Biol 32: 31PubMedGoogle Scholar
  21. Siegel DP (1986) Inverted micellar intermediates and the transition between lamellar, cubic, and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion. Biophys J 49: 1171–1183PubMedCrossRefGoogle Scholar
  22. Siegel DP (1987) Membrane-membrane interactions via intermediates in lamellar-to-inverted hexagonal phase transitions. In Cell Fusion (Sowers AE, ed) pp 181–208. Plenum Press New YorkGoogle Scholar
  23. Skehel JJ, Bayley PM, Brown EB, Martin SR, Waterfield MD, White JM, Wilson IA, Wiley DC (1982) Changes in the conformation of influenza virus hemaglutinin at the pH optimum of virus-mediated membrane fusion. Proc Natl Acad Sci USA 85: 7852–7856Google Scholar
  24. Steck TL, Kant JA (1974) Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes. Meth Enzymol 31:172–180PubMedCrossRefGoogle Scholar
  25. Stegmann T, Hoekstra D, Scherphof G, Wilschut J (1985) Kinetics of pH-dependent fusion between influenza virus and liposomes. Biochem 24: 3107–3113CrossRefGoogle Scholar
  26. Stegmann T, Hoekstra D, Scherphof G, Wilschut J (1986) Fusion activity of influenza virus. A comparison between biological and artificial target membrane vesicles. J Biol Chem 261: 10966–10969PubMedGoogle Scholar
  27. Steinbrecht RA, Müller M (1987) Freeze-substitution and freeze-drying. In Cryotechniques in Biological Electron Microscopy (Steinbrecht RA, Zierold K, eds) pp 149–172. Springer BerlinGoogle Scholar
  28. Van Meer G, Simons K (1982) Viruses budding from either the apical or the basolateral plasma membrane domain of MDCK cells have unique phospholipid compositions. EMBO J 1: 847–852PubMedGoogle Scholar
  29. Van Meer, Simons K (1983) An efficient method for introducing defined lipids into the plasma membrane of mammalian cells. J Cell Biol 97: 1365–1374PubMedCrossRefGoogle Scholar
  30. Van Meer G, Davoust J, Simons K (1985) Parameters affecting low pH-mediated fusion of liposomes with the plasma membrane of cells infected with influenza virus. Biochem 24: 3593–3602CrossRefGoogle Scholar
  31. Verkleij AJ (1984) Lipidic intramembranous particles. Biochim Biophys Acta 779: 43–63PubMedGoogle Scholar
  32. Verkleij AJ, Humbel B, Studer D, Miiller M (1985) ‘Lipidic particle’ systems as visualized by thin-section electron microscopy. Biochim Biophys Acta 812: 591–594Google Scholar
  33. Verkleij AJ, Ververgaert PHJTh (1978) Freeze-fracture morphology of biological membranes. Biochim Biophys Acta 515: 303–327PubMedGoogle Scholar
  34. Weidman PJ, Melancon P, Block MR, Rothman JE (1989) Binding of an N-ethylmaleimide- sensitive fusion protein to golgi membranes requires both a soluble protein(s) and an integral membrane receptor. J Cell Biol 108: 1589–1596PubMedCrossRefGoogle Scholar
  35. Wharton SA (1987) The role of influenza virus haemagglutinin in membrane fusion. Microbiol Sc 4: 119–124Google Scholar
  36. White J, Helenius A, Gething MJ (1982a) Haemagglutinin of influenza virus expressed from a closed gene promotes membrane fusion. Nature 300: 658–659PubMedCrossRefGoogle Scholar
  37. White J, Kartenbeck J, Helenius A (1982b) Membrane fusion activity of influenza virus. EMBO J. 1: 217–222PubMedGoogle Scholar
  38. White J, Kielian M, Helenius A (1983) Membrane fusion proteins of enveloped animal viruses. Quart Rev Biophys 16: 151–195CrossRefGoogle Scholar
  39. Wiley DC, Skehel JJ (1987) The structure and function of the hemaglutinin membrane glycoprotein of influenza virus. Ann Rev Biochem 56: 365–394PubMedCrossRefGoogle Scholar
  40. Wilson DW, Wilcox CA, Flynn GC, Chen E, Kuang WJ, Henzel WJ, Block MR, Ullrich A, Rothman JE (1989) A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature 339: 355–359PubMedCrossRefGoogle Scholar
  41. Wilson LA, Skehel JJ, Wiley DC (1981) Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 289: 366–373PubMedCrossRefGoogle Scholar
  42. Yoshimura A, Yamashina S, Ohnishi SI (1985) Mobilization and aggregation of integral membrane proteins in erythrocytes induced by interaction with influenza virus at acidic pH. Exp Cell Res 160: 126–137PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Koert N. J. Burger
    • 1
  • Gerd Knoll
    • 2
  • Peter M. Frederik
    • 3
  • Arie J. Verkleij
    • 1
  1. 1.Institute of Molecular Biology & Medical BiotechnologyUniversity of UtrechtUtrechtThe Netherlands
  2. 2.Fakultät für BiologieUniversität KonstanzKonstanzGermany
  3. 3.EM-unit, Department of PathologyUniv. of LimburgMaastrichtNL

Personalised recommendations