Functional and Structural Aspects of Gramicidin-Lipid Interactions

  • J. A. Killian
  • H. Tournois
  • B. De Kruijff
Part of the NATO ASI Series book series (volume 40)


Lipids in isolated form show polymorphism. Depending on the type of lipid and experimental conditions, different macromolecular aggregate structures are formed. for membrane lipids hydrated in excess water, under physiological conditions of ionic strength, pH and temperature, three major liquid-crystalline phases are observed. These are: the lamellar phase, the inverted (type II) hexagonal phase (Fig. 1), and the normal (type I) micellar phase. The shape-structure concept of lipid polymorphism as originally proposed by Israelachvili et al. (1976) and adapted by Cullis and De Kruijff (1979) explains remarkably well most of the current data on lipid polymorphism (Fig. 2). If the surface area in the head group region matches that of the hydrocarbon region (such as in phosphatidylcholines) the molecule has an overall cylindrical shape and prefers to organize in extended bilayers. When the head group area exceeds the hydrocarbon area, as for instance in case of detergent-like lipids such as lysophosphatidylcholines, the molecule on average is cone shaped and prefers an organization with a convex (type I) surface curvature such as found in micelles or in the related normal (type I) hexagonal phase occurring for these lipids at low water content. Phosphatidylethanolamines are key representatives of the opposite case of an excess hydrocarbon area. This results in the concave (type II) surface curvature as found in the HII phase. Head group hydration and inter- and intramolecular interactions are important determinants for the shape of the lipid molecules in the shape-structure concept. The strictiy regulated (Goldfine et al., 1987; Wieslander et al., 1981) presence of large amounts of type II lipids (lipids which in hydration prefer to organize in type II structures) and their abundance in virtually all biomembranes suggests important structural and functional roles for these types of lipids.


Chemical Shift Anisotropy Lipid Organization Bilayer Formation Gramicidin Channel Transbilayer Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akashi K, Kurahashi K (1977) Biochem Biophys Res Commun 77:259–267PubMedCrossRefGoogle Scholar
  2. Andersen OS (1984) Ann Rev Physiol 46:531–548CrossRefGoogle Scholar
  3. Aranda FJ, Killian JA, De Kruijff B (1987) Biochim Biophys Acta 901:217–228PubMedCrossRefGoogle Scholar
  4. Batenburg AM, De Kruijff B (1988) Biosci Rep 8:299–307PubMedCrossRefGoogle Scholar
  5. Batenburg AM, Hibbeln JCL, Verkleij AJ, De Kruijff B (1987) Biochim Biophys Acta 903:142–154PubMedCrossRefGoogle Scholar
  6. Boni CT, Connolly AJ, Kleinfeld AM (1986) Biophys J 49:122–123PubMedCrossRefGoogle Scholar
  7. Brasseur R, Cabiaux V, Killian JA, De Kruijff B, Ruysschaert JM (1986) Biochim Biophys Acta 855:317–324CrossRefGoogle Scholar
  8. Brasseur R, Killian JA, De Kruijff B, Ruysschaert JM (1987) Biochim Biophys Acta 903:11–17.PubMedCrossRefGoogle Scholar
  9. Chapman D, Cornell BA, Eliasz AW, Perry A (1977) J Mol Biol 113:517–538PubMedCrossRefGoogle Scholar
  10. Chupin V, Killian JA, De Kruijff B (1987) Biophys J 51:395–405PubMedCrossRefGoogle Scholar
  11. Classen J, Haest CWM, Tournois H, Deuticke B (1987) Biochemistry 26:6604–6612PubMedCrossRefGoogle Scholar
  12. Cullis PR, De Kruijff B (1979) Biochim Biophys Acta 559:399–420PubMedGoogle Scholar
  13. Cullis PR, Hope MJ, De Kruijff B, Verkleij AJ, Tilcock CPS (1985) In: Phospholipids and Cellular Regulation, Vol I. Kuo KF (ed) CRC Press Inc, Boca Raton, pp 1–60Google Scholar
  14. De Kruijff B (1987) Nature 329:587–588PubMedCrossRefGoogle Scholar
  15. De Kruijff B, Cullis PR, Verkleij AJ, Hope MJ, Van Echteld CJA, Taraschi TF, Van Hoogevest P, Killian JA, Rietveld A, Van der Steen ATM (1985) In: Progress in Protein-Lipid Interactions, Watts EA, De Pont A (eds), Elsevier Sci Publ BV, Amsterdam, pp 89–142Google Scholar
  16. Doody MC, Pawnall HJ, Kao YJ, Smith LC (1980) Biochemistry 19:108–116PubMedCrossRefGoogle Scholar
  17. Ellens H, Bentz J, Szoka F (1986) Biochemistry 25:4141–4147PubMedCrossRefGoogle Scholar
  18. Elliott JR, Needham D, Dilger JP, Haydon DA (1983) Biochim Biophys Acta 735:95–103PubMedCrossRefGoogle Scholar
  19. Gasset M, Killian JA, Tournois H, De Kruijff B (1988) Biochim Biophys Acta 939:79–88PubMedCrossRefGoogle Scholar
  20. Glickson JD, Mayers DF, Settine JM, Urry DW (1972) Biochemistry 11:477–486PubMedCrossRefGoogle Scholar
  21. Goldfine H, Johnston NC, Mattai J, Shipley GG (1987) Biochemistry 26:2814–2822PubMedCrossRefGoogle Scholar
  22. Israelachvili JN, Mitchell DJ, Ninham BW (1976) J Chem Soc Faraday Trans II 72:1525–1568CrossRefGoogle Scholar
  23. Hawkes GE, Lian L, Randall EW, Sales KD, Curzon EH (1987) Eur J Biochem 166:437–445PubMedCrossRefGoogle Scholar
  24. Hope MJ, Cullis PR (1981) Biochim Biophys Acta 640:82–90PubMedCrossRefGoogle Scholar
  25. Jung G, Bruckner H, Schmidt H (1981) In: Structure and Activity of Natural Peptides, Voelter W, Weitzer G (eds), pp 75–114Google Scholar
  26. Jung G, Katz E, Schmidt H, Voges KP, Winter W (1983) Biopolymers 22:241–246CrossRefGoogle Scholar
  27. Kachar B, Reese TS (1982) Nature, London 296:464–466CrossRefGoogle Scholar
  28. Katz E, Demain AL (1977) Bact Rev 41:449–474PubMedGoogle Scholar
  29. Killian JA, De Kruijff B (1985a) Biochemistry 24:7890–7898PubMedCrossRefGoogle Scholar
  30. Killian JA, De Kruijff B (1985b) Biochemistry 24:7881–7890PubMedCrossRefGoogle Scholar
  31. Killian JA, De Kruijff B (1986) Chem Phys Lipids 40:259–284PubMedCrossRefGoogle Scholar
  32. Killian JA, De Kruijff B (1988) Biophys J 53:111–117PubMedCrossRefGoogle Scholar
  33. Killian JA, Urry DW (1988) Biochemistry 27:7295–7301PubMedCrossRefGoogle Scholar
  34. Killian JA, De Kruijff B, Van Echteld CJA, Verkleij AJ, Leunissen-Bijvelt J, De Gier J (1983) Biochim Biophys Acta 728:141–144PubMedCrossRefGoogle Scholar
  35. Killian JA, Timmermans JW, Keur S, De Kruijff B (1985) Biochim Biophys Acta 820:154–156PubMedCrossRefGoogle Scholar
  36. Killian JA, Borle F, De Kruijff B, Seelig J (1986a) Biochim Biophys Acta 854:133–142PubMedCrossRefGoogle Scholar
  37. Killian JA, Van den Berg CW, Tournois H, Keur S, Slotboom A, Van Scharrenburg GJM, De Kruijff B (1986b) Biochim Biophys Acta 857:13–27PubMedCrossRefGoogle Scholar
  38. Killian JA, Burger KNJ, De Kruijff B (1987) Biochim Biophys Acta 897:269–284PubMedCrossRefGoogle Scholar
  39. Killian JA, Prasad KU, Hains D, Urry DW (1988) Biochemistry 27:4848–4855PubMedCrossRefGoogle Scholar
  40. Killian JA, Prasad KU, Urry DW, De Kruijff B (1989) Biochim Biophys Acta 978:341–345PubMedCrossRefGoogle Scholar
  41. Kolb HA, Bamberg E (1977) Biochim Biophys Acta 464:127–141PubMedCrossRefGoogle Scholar
  42. Langs DA (1988) Science 241:188–191PubMedCrossRefGoogle Scholar
  43. Lewis BA, Engelman DM (1983) J Mol Biol 166:211–217PubMedCrossRefGoogle Scholar
  44. Lipmann F (1980) Adv Microbiol Phys 21:227–266CrossRefGoogle Scholar
  45. Macdonald PM, Seelig J (1988) Biochemistry 27:2357–2364PubMedCrossRefGoogle Scholar
  46. Madden TD, Cullis PR (1982) Biochim Biophys Acta 684:149–153PubMedCrossRefGoogle Scholar
  47. Masotti L, Spinsi A, Urry DW (1980) Cell Biophys 2:241–251PubMedGoogle Scholar
  48. Mayer LO, Hope MJ, Cullis PR (1986) Biochim Biophys Acta 858:161–168PubMedCrossRefGoogle Scholar
  49. Meulendijks GHWM, Sonderkamp T, Buck HJ (1988) Biochim Biophys Acta 979:321–330Google Scholar
  50. Noordam PC, Van Echteld CJA, De Kruijff B, De Gier J (1981) Biochim Biophys Acta 646:483–487.CrossRefGoogle Scholar
  51. Pasquali-Ronchetti I, Spisni A, Casali E, Masotti L, Urry DW (1983) Biosci Rep 3:127–133PubMedCrossRefGoogle Scholar
  52. Prasad KU, Trapane TL, Busath D, Szabo G, Urry DW (1983) Int J Pept Prot Res 22:341–347CrossRefGoogle Scholar
  53. Rice D, Oldfield E (1979) Biochemistry 18:3272–3279PubMedCrossRefGoogle Scholar
  54. Seelig J (1977) Quat Rev Biophys 10:353–418CrossRefGoogle Scholar
  55. Shungu DC, Hinton JF, Koeppe II RE, Millett FS (1986) Biochemistry 25:6103–6108PubMedCrossRefGoogle Scholar
  56. Siegel DP (1987) In: Cell Fusion (Sowers AE, ed), Plenum Press, New York, pp 181–207Google Scholar
  57. Spisni A, Pasquali-Ronchetti I, Casali E, Lindner L, Cavatorta P, Masotti L, Urry DW (1983) Biochim Biophys Acta 732:58–68PubMedCrossRefGoogle Scholar
  58. Stark G, Strassle M, Tachar Z (1986) J Membr Biol 89:23–27PubMedCrossRefGoogle Scholar
  59. Stutzin A (1986) FEBS Lett 197:274–280PubMedCrossRefGoogle Scholar
  60. Sychev SV, Nevskaya NA, Jordanov S, Shepel EN, Miroshnikow AI, Ivanov VT (1980) Bioorg Chem 9:121–151CrossRefGoogle Scholar
  61. Tank DW, Wu ES, Meers PR, Webb WW (1982) Biophys J 40:129–135PubMedCrossRefGoogle Scholar
  62. Tournois H, Fabrie ChHJP, Burger KNJ, Mandersloot J, Hilgers P, Van Dalen H, De Gier J and De Kruijff B (1989) Manuscript in preparationGoogle Scholar
  63. Tournois H, Henseleit U, De Gier J, De Kruijff B, Haest CWM (1988) Biochim Biophys Acta 946:173–177PubMedCrossRefGoogle Scholar
  64. Tournois H, Killian JA, Urry DW, Bokking OR, De Gier J, De Kruijff B (1987a) Biochim Biophys Acta 905:222–226CrossRefGoogle Scholar
  65. Tournois H, Leunissen-Bijvelt J, Haest CWM, De Gier J, De Kruijff B (1987b) Biochemistry 26:6613–6621PubMedCrossRefGoogle Scholar
  66. Urry DW (1985) In: The Enzymes of Biological Membranes, Vol I. Martonosi AN (ed) Plenum Press, New York, pp. 229–257Google Scholar
  67. Urry DW, Glickson JD, Mayers DF, Haider J (1972) Biochemistry 11:487–493PubMedCrossRefGoogle Scholar
  68. Urry DW, Spisni A, Khaled MA, Long MM (1979) Int J Quant Chem: Quant Biol Symp 6:289–303Google Scholar
  69. Urry DW, Trapane TL, Prasad KU (1983) Science 221:1064–1067PubMedCrossRefGoogle Scholar
  70. Valtersson C, Van Duijn G, Verkleij AJ, Chojnacki T, De Kruijff B, Dallner G (1985) J Biol Chem 260:2742–2751PubMedGoogle Scholar
  71. Van Duijn G, Valtersson C, Chojnacki T, Verkleij AJ, Dallner G, De Kruijff B (1986) Biochim Biophys Acta 861:211–223PubMedCrossRefGoogle Scholar
  72. Van Echteld CJA, De Kruijff B, Verkleij AJ, Leunissen-Bijvelt J, De Gier J (1982) Biochim Biophys Acta 692:126–138CrossRefGoogle Scholar
  73. Veatch WR, Blout ER (1974) Biochemistry 13:5257–5264PubMedCrossRefGoogle Scholar
  74. Veatch WR, Fossel ET, Blout ER (1974) Biochemistry 13:5249–5256PubMedCrossRefGoogle Scholar
  75. Wallace BA (1986) Biophys J 49:295–306PubMedCrossRefGoogle Scholar
  76. Wallace BA, Ravikumar K (1988) Science 241:182–187PubMedCrossRefGoogle Scholar
  77. Wieslander A, Rilfors L, Johansson LB-A, Lindblom G (1981) Biochemistry 20:730–735PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • J. A. Killian
    • 1
  • H. Tournois
    • 1
  • B. De Kruijff
    • 1
    • 2
  1. 1.Centre for Biomembranes and Lipid EnzymologyUniversity of UtrechtUtrechtThe Netherlands
  2. 2.Institute of Molecular Biology and Medical BiotechnologyUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations