Protein Glycosylation: Oligosaccharyl Transferase and a Novel Recognition Protein

  • Robert Noiva
  • Howard A. Kaplan
  • M. Geetha-Habib
  • William J. Lennarz
Conference paper
Part of the NATO ASI Series book series (volume 40)


The amount of information about the pathway of secretory and plasma membrane glycoprotein synthesis has increased dramatically during the past decade. It is clear that not only the initial process of translation/glycosylation, but also the subsequent steps of polypeptide and oligosaccharide chain processing occur in the endomembrane system consisting of the rough endoplasmic reticulum, the Golgi complex, and vesicles derived from these subcellular organelles. Although there has been good progress in acquiring information about the overall pathway of N-linked glycoprotein synthesis in this endomembrane system, detailed characterization of the properties of the enzymes has been restricted to those involved in processing reactions in the Golgi complex. Indeed, a number of these enzymes have been isolated in pure form and some have been cloned and sequenced.


Rough Endoplasmic Reticulum Glycosylation Site Protein Disulfide Isomerase Prolyl Hydroxylase Oligosaccharide Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aubert, J.P., Chiroutre, M., Kerckaert, J.P., Helbecque, N. and Loucheux-Lefebvre, M.H. (1982). Biochem. Biophys. Res. Commun. 104, 1550–1559.PubMedCrossRefGoogle Scholar
  2. Ballou, L., Gopal, P., Krümmel, B., Tammi, M. and Ballou, C. (1986). Proc. Natl. Acad. Sci USA 83, 3081–3085.PubMedCrossRefGoogle Scholar
  3. Bause, E. (1983). Biochem. J. 209, 323–330.PubMedGoogle Scholar
  4. Bause, E. (1984). Biochem. Soc. Trans. 12, 514–517.PubMedGoogle Scholar
  5. Bause, E. and Legier, G. (1981). Biochem. J. 195, 639–644.PubMedGoogle Scholar
  6. Boado, R.J., Campbell, D.A. and Chopra, I.J. (1988). Biochem. Biophys. Res. Comm. 155, 1297–1304.PubMedCrossRefGoogle Scholar
  7. Chalifour, R.J. and Spiro, R.C. (1988). J. Biol. Chem. 263, 15673–15680.PubMedGoogle Scholar
  8. Chen, W.W. and Lennarz, W.J. (1977). J. Biol. Chem. 252, 3473–3479.PubMedGoogle Scholar
  9. Cheng, S., Gong, Q., Parkison, C., Robinson, E.A., Appella, E., Merlino, G.T. and Pastan, I. (1987) J. Biol. Chem. 262, 11221–11227.PubMedGoogle Scholar
  10. Chilton, B.S., Kaplan, H.A. and Lennarz, W.J. (1988). Endocrinology 123, 1237–1244.PubMedCrossRefGoogle Scholar
  11. Das, R. and Heath, E.C. (1980). Proc. Natl. Acad. Sci. USA 77, 3811–3815.PubMedCrossRefGoogle Scholar
  12. Edman, J.C., Ellis, L., Blacher, R.W., Roth, R.A. and Rutter, W.J. (1985). Nature 317, 267–270.PubMedCrossRefGoogle Scholar
  13. Franc, J.-L. and Bouchilloux, S. (1984). Biochim. Biophys. Acta 800, 166–170.PubMedCrossRefGoogle Scholar
  14. Geetha-Habib, M., Noiva, R., Kaplan, H.A. and Lennarz, W.J. (1988). Cell 54, 1053–1060.PubMedCrossRefGoogle Scholar
  15. Glabe, C.G., Hanover, J.A. and Lennarz, W.J. (1980). J. Biol. Chem. 255, 9236–9242.PubMedGoogle Scholar
  16. Grant, S.R., Welply, J.K., Olson, E.N. and Lennarz, W.J. (1986). Arch. Biochem. Biophys. 248, 424–428.PubMedCrossRefGoogle Scholar
  17. Hanover, J.A. and Lennarz, W.J. (1981). Arch. Biochem. Biophys. 211, 1–19.PubMedCrossRefGoogle Scholar
  18. Hanover, J.A. and Lennarz, W.J. (1982). J. Biol. Chem. 257, 2787–2794.PubMedGoogle Scholar
  19. Hart, G.W., Brew, K., Grant, G.A., Bradshaw, R.A. and Lennarz, W.J. (1979). J. Biol. Chem. 254, 9747–9753.PubMedGoogle Scholar
  20. Hortin, G., Stern, A.M., Miller, B., Abeles, R.H. and Boime, I. (1983). J. Biol. Chem. 258, 4047–4050.PubMedGoogle Scholar
  21. Hubbard, S.C. and Ivatt, R.J. (1981). Ann. Rev. Biochem. 50, 555–583.PubMedCrossRefGoogle Scholar
  22. Huftaker, T.C. and Robbins, P.W. (1983). Proc. Natl. Acad. Sci. USA 80, 7466–7470.CrossRefGoogle Scholar
  23. Hummel, J.P. and Dreyer, W.J. (1962). Biochim. Biophys. Acta 63, 530–537.PubMedCrossRefGoogle Scholar
  24. Kaplan, H.A., Naider, F. and Lennarz, W.J. (1988). J. Biol. Chem. 263, 7814–7820.PubMedGoogle Scholar
  25. Kaplan, H.A., Welply, J.K. and Lennarz, W.J. (1987). Biochim. Biophys. Acta 906, 161–173.PubMedGoogle Scholar
  26. Katz, F.N., Rothman, J.E., Lingappa, U.R., Blobel, G. and Lodish, H.F. (1977). Proc. Natl. Acad. Sci. USA 74, 3278–3282.PubMedCrossRefGoogle Scholar
  27. Koch, G.L.E. (1987). J. Cell Sci. 87, 491–492.PubMedGoogle Scholar
  28. Koivu, J., Myllyla, R., Helaakoski, T., Pihlajaniemi, T., Tasanen, K. and Kivirikka, K.I. (1987). J. Biol. Chem. 262, 6447–6449.PubMedGoogle Scholar
  29. Kornfeld, R. and Kornfeld, S. (1980). The Biochemistry of Glycoproteins and Proteoglycans (Lennarz, W.J., ed.). pp. 1–34, Plenum Press, New York.Google Scholar
  30. Kornfeld, S., Gregory, W. and Chapman, A. (1979). J. Biol. Chem. 254, 11649–11654.PubMedGoogle Scholar
  31. Kronquist, K.E. and Lennarz, W.J. (1978). J. Supramol. Struct. 8, 51–65.PubMedCrossRefGoogle Scholar
  32. Lau, J.T.Y., Welply, J.K., Shenbagamurthi, P., Naider, F. and Lennarz, W.J. (1983). J. Biol. Chem. 258, 15255–15260.PubMedGoogle Scholar
  33. Lingappa, V.R., Lingappa, J.R., Prasad, R., Ebner, K.E. and Blobel, G. (1978). Proc. Natl. Acad. Sci. USA 75, 2338–2341.PubMedCrossRefGoogle Scholar
  34. Marshall, R.D. (1974). Biochem. Soc. Symp. 40, 17–26.PubMedGoogle Scholar
  35. Olson, E.N., Glaser, L., Merlie, J.P., Sebane, R. and Lindstrom, J. (1983). J. Biol. Chem. 258, 13946–13953.PubMedGoogle Scholar
  36. Parkloneu, T., Kivirikko, K.I. and Pihlajaniemi, T. (1988). Biochem. J. 256, 1005–1011.Google Scholar
  37. Pihlajaniemi, T., Helaakoski, T., Tasanen, K., Myllyla, R., Huhtala, M.-L., Koivu, J. and Kivirikko, K.I. (1987). EMBO J. 6, 643–649.PubMedGoogle Scholar
  38. Pless, D.D. and Lennarz, W.J. (1977). Proc. Natl. Acad. Sci. USA 74, 134–138.PubMedCrossRefGoogle Scholar
  39. Rathod, P.K., Tashjian, A.H., Jr. and Abeles, R.H. (1986). J. Biol. Chem. 261, 6461–6469.PubMedGoogle Scholar
  40. Ronin, C. (1980). FEBS Lett. 113, 340–344.PubMedCrossRefGoogle Scholar
  41. Ronin, C., Granier, C., Caseti, C., Bouchilloux, S. and Rietschoten, J.V. (1981). Eur. J. Biochem. 118, 159–164.PubMedCrossRefGoogle Scholar
  42. Rothman, J.E. and Lodish, H.F. (1975). Nature (London) 269, 775–780.CrossRefGoogle Scholar
  43. Sharma, C.B., Lehle, L. and Tanner, W. (1983). Eur. J. Biochem. 116, 101–108.CrossRefGoogle Scholar
  44. Snider, M.D. and Rogers, O.C. (1984). Cell 36, 753–761.PubMedCrossRefGoogle Scholar
  45. Stern, A.M., Foxman, B.M., Tashjian, A.H., Jr. and Abeles, R.H. (1982). J. Med. Chem. 25, 544–550.PubMedCrossRefGoogle Scholar
  46. Struck, D.K. and Lennarz, W.J. (1980). The Biochemistry of Glycoproteins and Proteoglycans (Lennarz, W.J., ed.), pp. 35–84, Plenum Press, New York.Google Scholar
  47. Struck, D.K., Lennarz, W.J. and Brew, K. (1978). J. Biol. Chem. 253, 5786–5794.PubMedGoogle Scholar
  48. Waechter, C.J. and Lennarz, W.J. (1976). Ann. Rev. Biochem. 45, 95–112.PubMedCrossRefGoogle Scholar
  49. Welply, J.K., Kaplan, H.A., Shenbagamurthi, P., Naider, F. and Lennarz, W.J. (1986). Arch. Biochem. Biophys. 246, 808–819.PubMedCrossRefGoogle Scholar
  50. Welply, J.K., Shenbagamurthi, P., Lennarz, W.J. and Naider, F. (1983). J. Biol. Chem. 258, 11856–11863.PubMedGoogle Scholar
  51. Welply, J.K., Shenbagamurthi, P., Naider, F., Park, H.R. and Lennarz, W.J. (1985). J. Biol. Chem. 260, 6459–6465.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Robert Noiva
    • 1
  • Howard A. Kaplan
    • 1
  • M. Geetha-Habib
    • 1
  • William J. Lennarz
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyThe University of Texas M. D. Anderson Cancer CenterHoustonUSA

Personalised recommendations