Glycolipids — Intracellular Movement and Storage Diseases

  • K. Sandhoff
  • P. Leinekugel
Part of the NATO ASI Series book series (volume 40)


Glycosphingolipids (GSL) are components of plasmamembranes of animal cells. They are anchored in the cellular membrane by their hydrophobic ceramide (N-acylsphingosine) moiety, while the hydrophilic mono- or oligosaccharide part faces the extracellular space. Together with glycoproteins and glycosaminoglycanes glycosphingolipids form the glycocalix of cell surfaces. The GSL-patterns are characteristic for individual cell types, stages of differentiation and oncogenic transformation (Hakomori 1980; van Echten and Sandhoff, 1989). Though some of the sialic acid containing GSL have been identified as binding sites for toxins and viruses (Yamakawa and Nagai, 1978; Markwell et al., 1981), their physiological functions remain obscure. The structure of about 100 GSL could be elucidated thus far. Sialic acid-containing GSL, called gangliosides, are typical lipids of neuronal surfaces and are predominant in the grey matter (Lowden and Wolfe, 1964; Derry and Wolfe, 1967). Sulfatide and galactosylceramide as main components of myelin prevail on oligodendrocytes while glycolipids of the globoseries predominate on fibroblasts. Any disorder in metabolism of GSL would mainly affect those tissues in which the correspondent GSL is concentrated.


Sialic Acid Culture Skin Fibroblast Golgi Vesicle Metachromatic Leukodystrophy Lipid Storage Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Conzelmann E and Sandhoff K (1979) Purification and characterization of an activator protein for the degradation of glycolipids GM2 and GA2 by hexosaminidase A. Hoppe Seyler’s Z Physiol Chem 360: 1837–1849PubMedCrossRefGoogle Scholar
  2. Conzelmann E, Burg J, Stephan G, Sandhoff K (1982) Complexing of glycolipids and their transfer between membranes by the activator protein for lysosomal ganglioside GM2 degradation. Eur J Biochem 123: 455–464PubMedCrossRefGoogle Scholar
  3. Conzelmann E and Sandhoff K (1983/84) Partial enzyme deficiencies: Residual activities and the development of neurological disorders. Dev Neurosci 6: 58–71PubMedCrossRefGoogle Scholar
  4. Conzelmann E, Sandhoff K (1987a) Activator proteins for lysosomal glycolipid hydrolysis. Meth Enzymol 138, 792–815PubMedCrossRefGoogle Scholar
  5. Conzelmann E, Sandhoff K (1987b) Glycolipid and glycoprotein degradation. Adv Enzymol 60, 89–216PubMedGoogle Scholar
  6. Conzelmann E, Neumann C, Sandhoff K (1989) Correlation between degradation of sulfatide in cultured skin fibroblasts and residual arylsulfatase A activity. In: Salvayre R, Douste-Blazy L, Gatt S (eds) Lipid storage disorders: Biological and medical aspects. NATO ASI Series, Series A: Life Sciences 150: 267–271Google Scholar
  7. Coste H, Martel MB, Azzar G, Got R (1985) UDP-glucose-ceramide glucosyltransferase from porcine submaxillary glands is associated with the Golgi apparatus. Biochim Biophys Acta 814: 1–7PubMedCrossRefGoogle Scholar
  8. Coste H, Martel MB, Got R (1986) Topology of glucosylceramide synthesis in Golgi membranes from porcine submaxillary glands. Biochem Biophys Acta 858: 6–12PubMedCrossRefGoogle Scholar
  9. d’Azzo A, Hoogeveen A, Reuser JJ, Robinson D, Galjaard H, (1982) Molecular defect in combined β-galactosidase and neuraminidase deficiency in man. Proc Natl Sci USA 79: 4535–4539CrossRefGoogle Scholar
  10. Derry MD, Wolfe LS (1967) Gangliosides in isolated neurons and glial cells. Science 158: 1450–1452PubMedCrossRefGoogle Scholar
  11. Fischer G and Jatzkewitz H (1978) The activator protein of cerebroside sulphatase: A model for the activation. Biochem Biophys Acta 528: 69–76PubMedGoogle Scholar
  12. Fürst W, Machleidt W, Sandhoff K (1988) The precursor of sulfatide activator protein is processed to three different proteins. Biol Chem Hoppe-Seyler 369: 317–328PubMedCrossRefGoogle Scholar
  13. Fürst W, Schubert J, Machleidt W, Sandhoff K (1989) The complete amino acid sequences of G M2-activator protein and sulfatide activator protein. Submitted for publication.Google Scholar
  14. Hakomori SI (1981) Glycosphingolipids in cellular interaction, differentiation and oncogenesis. Ann Rev Biochem 50: 733–764PubMedCrossRefGoogle Scholar
  15. Hashimoto Y, Otsuka H, Sudo K, Suzuki A, Yamakawa T (1983a) Genetic regulation of G M2 expression in liver of mouse. J Biochem 93: 895–901PubMedCrossRefGoogle Scholar
  16. Hashimoto Y, Suzuki A, Yamakawa T, Miyashita N, Monikawi K (1983a) Expression of GM1 and GD1a in mouse liver is linked to the H-2 complex as chromosome 17. J Biochem 94: 2043–2048PubMedGoogle Scholar
  17. Hasilik A, von Figura K, Conzelmann E, Nehrkorn H, Sandhoff K (1982) Lysosomal precursors in human fibroblasts. Activation of cathepsin D-precursors in vitro and activity of hexosaminidase A precursor toward ganglioside G %M2. Eur J Biochem 125: 317–321PubMedCrossRefGoogle Scholar
  18. Iber H, Kaufmann R, Pohlentz G, Schwarzmann G, Sandhoff K (1989) Identity of GA1-, GMIa -, and GD1 b- synthases in Golgi vesicles from rat liver. FEBS Lett 248: 18–22PubMedCrossRefGoogle Scholar
  19. Klein D, Pohlentz G, Hinrichs U, Sandhoff K (1987) Metabolism of ganglioside-amides in cultured human fibroblasts. Biol Hoppe-Seyler 368: 1495–1503CrossRefGoogle Scholar
  20. Klein D, Leinekugel P, Pohlentz G, Schwarzmann G, Sandhoff K (1988) Metabolism and intracellular transport of gangliosides in cultured fibroblasts. In: Ledeen RW, Hogan EL, Tettamanti G, Yates AJ, Yu EK, (eds) New Trends in Ganglioside Research: Neurochemical and neuroregenerative aspects. Fidia Research Series 14: 247–258Google Scholar
  21. Kleinschmidt T, Christomanou H, Braunitzer G (1987) Complete amino-acid sequence and carbohydrate content of the naturally occuring glucosylceramide activator protein (A1 activator) absent from a new human Gaucher disease variant. Biol Chem Hoppe-Seyler 368: 1571–1578PubMedCrossRefGoogle Scholar
  22. Kytzia HJ, Hinrichs U, Maire I, Suzuki K, Sandhoff K (1983) Variant of GM2-gangliosidosis with hexosaminidase A having a severely changed substrate specifity. EMBO J 2: 1201–1205PubMedGoogle Scholar
  23. Kytzia HJ, Sandhoff K (1985) Evidence for two different active sites on human β-hexosaminidase A. Interaction of GM2 activator protein with β-hexosaminidase A. J Biol Chem 260: 7568–7572PubMedGoogle Scholar
  24. Lee-Vaupel M and Conzelmann E (1987) Assay for cerebroside sulfate (sulfatide) sulfatase in cultured skin fibroblasts with the natural activator protein. Clin Chim Acta 168: 55–68PubMedCrossRefGoogle Scholar
  25. Lowden JA, Wolfe LS (1964) Brain gangliosides. II. Evidence for the location of gangliosides specifically in neurons. Can J Biochem 42: 1587–1594PubMedCrossRefGoogle Scholar
  26. Markwell MAK, Svennerholm L, Paulson JC (1981) Specific gangliosides function as host cell receptors for Sendai virus. Proc Nat Acad Sci USA 78: 5406–5410PubMedCrossRefGoogle Scholar
  27. Nakakuma H, Sanai Y, Shiroki K, Nagai Y (1984) Gene-regulated expression of glycolipids: Appearance of G D3 ganglioside in rat cells on transfection with transforming gene El of human adenovirus type 12 DNA and its transcriptional subunits. J Biochem 96: 1471–1480PubMedGoogle Scholar
  28. Nakano T, Sandhoff K, Stumper J, Christomanou H, Suzuki K (1989) Structure of full length NA coding for sulfatide activator, a co-β-glucosidase and two other homologous proteins: Two alternate forms of the sulfatide activator. J Biochem 105: 152–154.PubMedGoogle Scholar
  29. Navon R, Proia RL (1989) The mutations in Ashkenazi jews with adult GM 2 gangliosidosis, the adult form of Tay-Sachsdisease. Science 243: 1471–1474PubMedCrossRefGoogle Scholar
  30. O’Brien JS, Kretz KA, Dewji NN, Wenger DA, Esch F, Fluharty AL, (1988) Coding of two sphingolipid activator proteins (SAP-1 and SAP-2) by same genetic locus. Science 241: 1098–1101PubMedCrossRefGoogle Scholar
  31. Ohno K, Suzuki K, (1988) A splicing defect due to an exonintron junctional mutation results in abnormal β-hexosaminidase α-chain in RNAs in Ashkenazi jewish patients with Tay-Sachs disease. Biochem Biophys Res Comm 153: 463–469PubMedCrossRefGoogle Scholar
  32. Pohlentz G, Klein D, Schwarzmann G, Schmitz D, Sandhoff K (1988) Both GD 2, GM2, and GD 2 synthases and GM 1 b, GD 1 a and GT 1 b synthases are single enzymes in Golgi vesicles from rat liver. Proc Nat Acad Sci USA 85: 7044–7048PubMedCrossRefGoogle Scholar
  33. Quintern LE, Schuchmann EH, Levran O, Suchi M, Ferlinz K, Reinke H, Sandhoff K, Desnick RJ (1989) Isolation of NA clones encoding human acid sphingomyelinase (occurence of alternatively processed transcripts). Submitted to EMBO JGoogle Scholar
  34. Sandhoff K and Christomanou H (1979) Biochemistry and genetics of gangliosidoses. Hum Genet 50: 107–143PubMedCrossRefGoogle Scholar
  35. Sandhoff K and Conzelmann E (1984) The biochemical basis of gangliosidoses. Neuropediatrics 15 (Suppl) 85–92PubMedCrossRefGoogle Scholar
  36. Sandhoff K, Schwarzmann G, Sarmientos F, Conzelmann E (1987) Fundamentals of ganglioside metabolism. In: Rahmann H (ed) Gangliosides and modulation of neuronal functions. NATO ASI Series H7: 231–250CrossRefGoogle Scholar
  37. Sandhoff K, Schwarzmann G, Conzelmann E, Klein D (1988) Gangliosides: Uptake, intracellular transport and metabolism in normal and mutant cells. In: Salvayre R, Douste-Blazy L, Gatt S (eds) Lipid storage disorders: Biological and medical aspects. NATO ASI Series, Series A: Life Sciences 150: 559–562Google Scholar
  38. Sandhoff K, Conzelmann E, Neufeld EF, Kaback MM, Suzuki K (1989) The GM2 Gangliosidoses. In: Scriver C, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited diseases. 6th. edition. McGraw Hill, New York, in press.Google Scholar
  39. Schwarzmann G, Hoffmann-Bleihauer P, Schubert J, Sandhoff K, Marsh D (1983) Incorporation of ganglioside analogues into fibroblasts cell membranes. A spin-label study. Biochemistry 22: 5041–5048PubMedCrossRefGoogle Scholar
  40. Schwarzmann G, Sonderfeld S, Conzelmann E, Marsh D, Sandhoff K (1984) Insertion into cultured cells and metabolism and intracellular transport of exogenous gangliosides. In: Dreyfus H, Massarelli R, Freysz L (eds) Cellular and pathological aspects of glycoconjugate metabolism. INSERM 126: 195–210Google Scholar
  41. Schwarzmann G, Marsh D, Herzog V, Sandhoff K (1986) in vitro incorporation and metabolism of gangliosides. In: Rahmann H (ed) Gangliosides and modulation of neuronal functions. NATO ASI Series H7: 217–229Google Scholar
  42. Schwarzmann G, Sandhoff K (1987) Lysogangliosides: Synthesis and use in preparing labeled gangliosides. In: Ginsburg V (ed) Methods in Enzymology. Academic Press, Orlando/ Florida 138: 319–341Google Scholar
  43. Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited diseases, 6th edition. McGraw, New York, in press.Google Scholar
  44. Sonderfeld S, Conzelmann E, Schwarzmann G, Burg J, Hinrichs U, Sandhoff K (1985) Incorporation and metabolism of gangliosides in skin fibroblasts from normal and G M2 gangliosidosis subjects. Eur J Biochem 149: 247–255PubMedCrossRefGoogle Scholar
  45. Suzuki Y, Ecker CP, Blough HA (1984) Enzymatic glucosylation of dolichol monophosphate and transfer of glucose from isolated dolichol-D-glucosyl phosphate to ceramides by BHK 21 cell microsomes. Eur J Biochem 143: 447–453PubMedCrossRefGoogle Scholar
  46. Tanaka A, Ohno K, Suzuki K (1988) G M2-gangliosidosis Bi variant: A wide geographic and ethnic distribution of the specific p-hexosaminidase a chain mutation originally identified in a Puerto Rican patient. Biochem Biophys Res Comm 156: 1015–1019PubMedCrossRefGoogle Scholar
  47. van Echten G, Sandhoff K (1989) Modulation of ganglioside biosynthesis in primary cultured neurons. J Neurochem 52: 207–214PubMedCrossRefGoogle Scholar
  48. Yamakawa T, Nagai Y (1978) Glycolipids at the cell surface and their biological functions. Trds Biochem Sci 3: 128–131CrossRefGoogle Scholar
  49. Yusuf HKM, Pohlentz G, Sandhoff K (1983) Tunicamycin inhibits ganglioside biosynthesis in rat liver Golgi apparatus by blocking sugar nucleotide transport across the membrane vesicles. Proc Natl Acad Sci USA 80: 7075–7079PubMedCrossRefGoogle Scholar
  50. Yusuf HKM, Schwarzmann G, Pohlentz G, Sandhoff K (1987) Oligosialogangliosides inhibit GM2- and GM3-synthesis in isolated Golgi vesicles from rat liver. Biol Chem Hoppe-Seyler 368: 455–462PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • K. Sandhoff
    • 1
  • P. Leinekugel
    • 1
  1. 1.Institut für Organische Chemie und BiochemieUniversität BonnBonn 1FRGermany

Personalised recommendations