Skip to main content

The Role of Non-Platinum Complexes in Cancer Therapy

  • Conference paper
Tin-Based Antitumour Drugs

Part of the book series: NATO ASI Series ((ASIH,volume 37))

  • 84 Accesses

Abstract

Metal complexes as pharmaceutical agents have been used since early history, but therapeutic efficacy in today’s meaning of the term was first confirmed on the basis of the examples of salvarsan (1910), particularly efficient in cases of syphilis, and some organic mercury compounds, such as novasurol (1919), and salyrgan (1924), which were used as diuretic agents. These drugs have gradually come to be replaced by compounds from organic chemistry that exhibit better activity. Nowadays drugs from inorganic chemistry are mainly represented by auranofin (INN), (2,3,4,6-tetra-O-acetyl-1-thio-1-ß-D-glucopyranosato)(triethylphosphine)gold(I) (Fig. 1), active against primary chronic poly-arthritis (PCP) (Bemers-Price and Sadler, 1985; Lewis and Walz, 1982), sodium nitroprusside, niprussR, disodiumpentacyanonitrosylferrate(II)dihydrate, Na2[Fe(NO)(CN)5] x 2H2O, used as an emergency drug in the case of high blood pressure crises, lithium salts, used in psychiatry (Pöldinger, 1982), many preparations for local application in dermatology and gastroenterology, and metal salts for the prevention of deficiencies. In cancer therapy, the only drug from inorganic chemistry to be under routine clinical use is cisplatin (INN), cis-diamminedichloroplatinum(II) (Fig. 2). This drug was synthesized for the first time by Michele Peyrone and was published in 1844 in the “Annals of Chemistry and Pharmacy” (Peyrone, 1844).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achterrath, W., Raettig, R., Franks, C.R., and Seeber, S. (1984). Aktuelle CisplatinDerivate. In: S. Seeber et al. (eds.), Beiträge zur Onkologie, Bd. 18, Das Resistenzproblem bei der Chemo-und Radiotherapie maligner Tumoren, 58–82, S. Karger Verlag Basel.

    Google Scholar 

  • Adamson, R.H., Canellos, G.P., and Sieber, S.M. (1975). Studies on the Antitumor Activity of Gallium Nitrate (NSC 15200) and Other Group Ma Metal Salts. Cancer Chemotherapy Reports (Part 1), 59, 3, 599–610.

    Google Scholar 

  • Alessio, E., Attia, W., Calligaris, M., Cauci, S., Dolzani, L., Mestroni, G., MontiBragadin, C., Nardin, G., Quadrifoglio, F., Sava, G., Tamaro, M., and Zorzet, S. (1988). Metal Complexes of Platinum Group: The Promising Antitumor Features of cisDichlorotetrakis(dimethylsulfoxide)ruthenium(II) [cis-RuC12(MeSO)4] and Related Complexes. In: Nicolini, M. (ed.), Proc. of the 5th Int. Symp. on Platinum and other Metal Coordination Compounds in Cancer Chemotherapy, 617–633, Martinus Nijhoff Publishing, Boston.

    Google Scholar 

  • Alessio, E., Mestroni, G., Nardin, G., Attia, W.M., Calligaris, M., Sava, G., and Zorzet, S. (1988). Cis-and trans-Dihalotetrakis(dimethylsulfoxide)ruthenium(II) Complexes (RuX2(DMSO)4; X = Cl, Br): Synthesis, Structure, and Antitumor Activity. Inorganic Chemistry, 27, 23, 4099–4106.

    CAS  Google Scholar 

  • Anghileri, L.J. (1975). On the Antitumor Activity of Gallium and Lanthanides. Arzneim.-Forsch./Drug Res. 25, 5, 793–795.

    CAS  Google Scholar 

  • Anghileri, L.J. (1979). Effects of Gallium and Lanthanum on Experimental Tumor Growth. Europ. J. Cancer, 15, 1459–1462.

    CAS  Google Scholar 

  • Anghileri, L.J., Crone-Escanye, M.-Chr., and Robert, J. (1987). Antitumor Activity of Gallium and Lanthanum: Role of Cation-Cell Membrane Interaction. Anticancer Res., 7, 1205–1208.

    PubMed  CAS  Google Scholar 

  • Berger, M.R., Bischoff, H., Garzon, F.T., and Schmähl, D. (1986). Autochthonous, Acetoxymethylmethylnitrosamine-induced Colorectal Cancer in Rats: A Useful Tool in Selecting New Active Antineoplastic Agents? HepatogastroenteroL 33, 227–234.

    CAS  Google Scholar 

  • Berger, M.R., Bischoff, H., Garzon, F.T., and Schmähl, D. (1986). Autochthonous, Acetoxymethylmethylnitrosamine-induced Colorectal Cancer in Rats: A Useful Tool in Selecting New Active Antineoplastic Agents? HepatogastroenteroL 33, 227–234.

    CAS  Google Scholar 

  • Berners-Price, S.J., and Sadler, P.J. (1985 ). Gold Drugs. Front. Bioinorg. Chem.,376–88.

    Google Scholar 

  • Berners-Price, S.J., Mirabelli, Ch.K., Johnson, R.K., Mattem, M.R., McCabe, F.L., Faucette, L.F., Chiu-Mei Sung, Shau-Ming Mong, Sadler, P.J., and Crooke, St.T. (1986). In Vivo Antitumor Activity and in Vitro Cytotoxic Properties of Bis[1,2-bis(diphenylphosphino)ethane]gold(I)chloride. Cancer Research, 46, 5486–5493.

    PubMed  CAS  Google Scholar 

  • Berners-Price, S.J., and Sadler, P.J. (1988). Phosphines and Metal Phosphine Complexes: Relationship of Chemistry to Anticancer and Other Biological Activity. Structure and Bonding, 70, 28–97.

    Google Scholar 

  • Bischoff, H., Berger, M.R., Keppler, B.K., and Schmähl, D. (1987). Efficacy of ß-Diketonato Complexes of Titanium, Zirconium, and Hafnium against Autochthonous Colonic Tumors in Rats. J. Cancer Res. Clin. Oncol. 113, 446–450.

    PubMed  CAS  Google Scholar 

  • Clarke, M.J. (1980). Oncological Implications of the Chemistry of Ruthenium.In: H. Sigel (ed.), Metal Ions in Biological Systems, Vol. 11: Metal Complexes as Anticancer Agents, 231–276, Marcel Dekker, New York.

    Google Scholar 

  • Clarke, M.J. (1980). The Potential of Ruthenium in Anticancer Pharmaceuticals. Acs. Symp. Ser. (Am. Chem. Soc.) 140, 157–180.

    CAS  Google Scholar 

  • Clarke, M.J., Galang, R.D., Rodriguez, V.M., Kumar, R., Pell, S., Bryan, D.M. (1988). Chemical Considerations in the Design of Ruthenium Anticancer Agents. In: Nicolim,M. (ed.), Proc. of the 5th Int. Symp. on Platinum and other Metal Coordination Compounds in Cancer Chemotherapy, 582–600, Martinus Nijhoff Publishing, Boston.

    Google Scholar 

  • Collery, P., Millart, H., Simoneau, J.P., Pluot, M., Halpern, S., Pechery, C., Choisy, H., and Etienne, J.C. (1984). Experimental Treatment of Mammary Carcinomas by Gallium Chloride after Oral Administration: Intratumor dosages of gallium, anatomopathologic study and intracellular microanalysis. Trace Elements in Medicine, 1, 4, 159–161.

    CAS  Google Scholar 

  • Collery, P. (1989). Personal Communication.

    Google Scholar 

  • Curt, G.A., Allegra, C.J., Fine, R.L., Mujagic, H., Chao Yeh, G., and Chabner B.A. (1986). Cancer Chemotherapy. In: Ullmann’s Encyclopedia of Industrial Chemistry, Vol. A5, 1–28, VCH Verlag Weinheim, FRG.

    Google Scholar 

  • Dimitrov, N.V., and Eastland, G.W. (1978). Antitumor Effect of Rhenium Carboxylates in Tumor-Bearing Mice. Int. Congr. Chemother., Proc. of the 10th, Current Chemother. 1977, 1319–1321.

    Google Scholar 

  • Eastland, G.W., Yang, G., and Thompson, T. (1983). Studies of Rhenium Carboxylates as Antitumor Agents. Part II. Antitumor Studies of Bis(µ-Propionato)Diaquotetra-bromodirhenium(III) in Tumor-Bearing Mice. Meth. and Find. Exptl. Clin. Pharmacol., 5 (7), 435–438.

    CAS  Google Scholar 

  • Ehninger, G., Haag, C., and Wilms, K. (1984). Die Pharmakokinetik von cis-Diaminodichloroplatin. TumorDiagnostik and Therapie, 5, 147–151.

    Google Scholar 

  • Elo, H.O., and Lumme, P.O. (1985). Antitumor Activity of trans-Bis(salicylaldoximato)cópper(ll): A Novel Antiproliferative Metal Complex. Cancer Treatment Rep., 69, 9, 1021–1022.

    CAS  Google Scholar 

  • Engel, J., Schönenberger, H., Lux, F., and Hilgard, P. (1987). Estrophilic Cisplatin Derivatives. Cancer Treatment Reviews, 14, 275–283.

    PubMed  CAS  Google Scholar 

  • Erck, A., Rainen, L., Whileyman, J., Chang, J.M., Kimball, A.P., Bear, J. (1974) Studies of Rhodium(ll) Carboxylates as Potential Antitumor Agents. Proc. Soc. Exp. Biol. and Med.,145, 1278–1283.

    CAS  Google Scholar 

  • Francis, M.D., and Martodam, R.R. (1983). Chemical, Biochemical, and Medicinal Properties of the Diphosphonates. In: Hilderbrand, R.L. (ed.), The Role of Phosphonates in Living Systems. CRC Press, 55–96.

    Google Scholar 

  • Garzon, F.T., Berger, M.R., Keppler, B.K., and Schmähl, D. (1987). Paradoxical Effect of Dichlorobis(1-phenylbutane-1,3-dionato)molybdenum(IV), Mo(bzac))2C12, on the Growth of Autochthonous Chemically Induced Colorectal Tumors in SD-Rats. Cancer Letters, 34, 325–330.

    PubMed  CAS  Google Scholar 

  • Garzon, F.T., Berger, M.R., Keppler, B.K., and Schmähl, D. (1987). Comparative Antitumor Activity of Ruthenium Derivatives with 5’-Deoxy-5-fluorouridine in Chemically Induced Colorectal Tumors in Sd Rats. Cancer Chemotherapy and Pharmacology, 19, 347–349.

    PubMed  CAS  Google Scholar 

  • Garzon, F.T., Berger, M.R., Keppler, B.K., and Schmähl, D (1987).

    Google Scholar 

  • Activity of Heterocyclic Coordinated Ruthenium Derivatives on Experimental Acetoxymethylmethylnitrosamine-induced Colorectal Tumors in SD Rats. 5th NCI-EORTC Symposium on New Drugs in Cancer Therapy, Amsterdam, 22.-24.10. 1986, Invest. New Drugs, 5, 1, 84.

    Google Scholar 

  • Gill, D.S. (1984). Structure Activity Relationship of Antitumor Palladium Complexes. Dev. Oncol. 17, 267–278.

    CAS  Google Scholar 

  • Giraldi, T., Zassinovich, G., and Mestroni, G. (1974). Antitumor Action of Planar, Organometallic Rhodium(I) Complexes. Chem.-Biol. Interactions 9, 389–394.

    CAS  Google Scholar 

  • Giraldi, T., Sava, G., Bertoli, G., Mestroni, G., and Zassinovich, G. (1977).

    Google Scholar 

  • Antitumor Action of Two Rhodium and Ruthenium Complexes in Comparison with cisDiam m i n edichloroplatinum(l). Cancer Res. 37, 2662–2666.

    Google Scholar 

  • Goodwin, J.W., Kopecky, K., Slavik, M., Tranum, B.L., Balcerzak, St.P., Fletcher, W.S., and Costanzi, J.J. (1987). Phase II Evaluation of Spirogermanium in Malignant Melanoma: A Southwest Oncology Group Study. Cancer Treatment Rep., 71, 10, 985–986.

    CAS  Google Scholar 

  • Harrap, K.R. (1985). Preclinical Studies Identifying Carboplatin as a Viable Cisplatin Alternative. Cancer Treatment Rev., 12 ( Suppl. A), 21–33.

    Google Scholar 

  • Hart, M.M., and Adamson, R.H. (1971). Antitumor Activity and Toxicity of Salts of Inorganic Group IIIa Metals: Aluminum, Gallium, Indium, and Thallium. Proc. Nat. Acad. Sci. USA, 68, 7, 1623–1626.

    PubMed  CAS  Google Scholar 

  • Hart, M.M., Smith, C.F., Yancey, S.T., and Adamson, R.H. (1971). Toxicity and Antitumor Activity of Gallium Nitrate and Periodically Related Metal Salts. Journal of the National Cancer Institute, 47, 5, 1121–1127.

    PubMed  CAS  Google Scholar 

  • Heim, M.E., and Keppler, B.K. (1989). Clinical Studies with Budotitane–A New non-Platinum Metal Complex for Cancer Therapy. Progress in Clin. Biochemistry and Medicine, 10, 217–223.

    Google Scholar 

  • Hill, B.T., Whatley, S.A., Bellamy, A.S., Jenkins, L.Y., and Whelan, R.D.H. (1982). Cytotoxic Effects and Biological Activity of 2-Aza-8-germanspiro[4,5]decane-2propanamine-8,8-diethyl-N,N-dimethyl Dichloride (NSC 192965; Spirogermanium) in Vitro. Cancer Res., 42, 2852–2856.

    PubMed  CAS  Google Scholar 

  • Hodnett, E.M., Moore, Ch.H., and French, F.A. (1971). Cobalt Chelates of Schiff Bases of Aromatic Amines as Antitumor Agents. J. Medicinal Chem., 14, 11, 1121–1123.

    CAS  Google Scholar 

  • Hopkins, S.J. (1980). Ge-132. Drugs of the Future, V, 11, 545–546.

    Google Scholar 

  • Howard, R.A., Sherwood, E., Erck, A., Kimball, A.P., Bear, J.L. (1977).

    Google Scholar 

  • Hydrophobicity of Several Rhodium(II) Carboxylates Correlated with Their Biologic Activity. J. Medicinal Chem.,20, 7, 943–946.

    Google Scholar 

  • Jennerwein, M., Wappes, B., Gust, R., Schönenberger, H., Engel, J., Seeber, S., and Osieka, R. (1988). Influence of Ring Substituents on the Antitumor Effect of Dichloro(1,2-diphenylethylenediamine)platinum(II) Complexes. J. Cancer Res. Clin. Oncol., 114, 347–358.

    PubMed  CAS  Google Scholar 

  • Karl, J., Gust, R., and Spruss, Th. (1988). Ring-Substituted [1,2-Bis(4-hydroxyphenyl)ethylenediamine]dichloroplatinum(II) Complexes: Comparison with a Selective Effect on the Hormone-Dependent Mammary Carcinoma. J. Medicinal Chem., 31, 72–83.

    CAS  Google Scholar 

  • Keller, H.J., Keppler, B.K., and Schmähl, D. (1982). Antitumor Activity of cisDihalogenobis(1-phenyl-1,3-dionato)titanium(IV) Compounds against Walker 256 Carcinosarcoma. Arzneim.-Forsch./Drug Res. 32 (II), 8, 806–807.

    Google Scholar 

  • Keller, H.J., Keppler, B.K., and Schmähl, D. (1983). Antitumor Activity of cisDihalogenobis(1-phenyl-1,3-dionato)titanium(IV) Compounds. J. Cancer Res. Clin. Oncol. 105, 109–110.

    PubMed  CAS  Google Scholar 

  • Kempf, S.R., and Ivankovic, S. (1986). Carcinogenic Effect of Cisplatin (cis-Diamminedichloroplatinum(II), CDDP) in BD IX Rats. J. Cancer Res. Clin. Oncol., 111, 133–136.

    PubMed  CAS  Google Scholar 

  • Kempf, S.R., and Ivankovic, S. (1986). Chemotherapy-Induced Malignancies in Rats after Treatment with Cisplatin as a Single Agent and in Combination: Preliminary Studies. Oncology, 43, 187–191.

    PubMed  CAS  Google Scholar 

  • Keppler, B.K., and Michels, K. (1985). Antitumor Activity of 1,3-Diketonato Zirconium(IV) and Hafnium(IV) Complexes. Arzneim.-Forsch./Drug Res. 35 (II), 12, 1837–1839.

    Google Scholar 

  • Keppler, B.K., Diez, A., and Seifried, V. (1985). Antitumor Activity of Phenyl Substituted Dihalogenobis(1 henyl-1,3-butanedionato)titanium(IV) Complexes. Arzneim.-Forsch./Drug Res. 35 (II), 12, 1832–1836.

    Google Scholar 

  • Keppler, B.K., and Rupp, W. (1986). Antitumor Activity of Imidazolium-bis(imidazole)tetrachlororuthenate(III). J. Cancer Res. Clin. Oncol. 111, 166–168.

    PubMed  CAS  Google Scholar 

  • Keppler, B.K., and Schmähl, D. (1986). Preclinical Evaluation of Dichlorobis(1 henylbutane-1,3-dionato)titanium(IV) and Budotitane. Arzneim.-Forsch./Drug Res. 36 (II), 12, 1822–1828.

    Google Scholar 

  • Keppler, B.K. (1987). Metallkomplexe in der Krebstherapie. Nachr. Chem. Tech. Lab., 35, 10, 1029–1036.

    Google Scholar 

  • Keppler, B.K., Balzer, W., and Seifried, V. (1987). Synthesis and Antitumor Activity of Triazolium-bis(triazole)tetrachlororuthenate(III) and Bistriazolium-triazolepentachlororuthenate(lII). Arzneim.-Forsch./Drug Res. 37(11), 7, 770–771.

    Google Scholar 

  • Keppler, B.K., Wehe, D., Endres, H., and Rupp, W. (1987). Synthesis, Antitumor Activity, and X-Ray Structure of Bis(imidazolium)imidazolepentachlororuthenate(III), (ImH)2(RuImC15). Inorganic Chemistry, 26 (6), 844–846.

    CAS  Google Scholar 

  • Keppler, B.K., Rupp, W., Endres, H., Niebl, R., and Balzer, W. (1987). Synthesis, Molecular Structure, and Tumor-inhibiting Properties of Imidazolium-bis(imidazole)tetrachlororuthenate(III) and its Methyl-Substituted Derivatives. Inorganic Chemistry, 26, 4366–4370.

    CAS  Google Scholar 

  • Keppler, B.K., Garzon, F.T., Rupp, W., Niebl, R., Juhl, U.M., Berger, M.R., and Schmähl, D. (1987). Preclinical Evaluation of New Tumor-Inhibiting Ruthenium Compounds. Proc. 4th SEK Symp., Heidelberg, 18.-21.3.1987, J. Cancer Res. Clin. Oncol., Suppl. to Vol. 113.

    Google Scholar 

  • Keppler, B.K., Bischoff, H., Berger, M.R., Heim, M.E., Reznik, G., and Schmähl, D. (1988). Preclinical Development and First Clinical Studies of Budotitane. ISPCC 1987, Padua; In: Nicolini, M. (Ed.), Proc. 5th Int. Symp. on Platinum and other Metal Coordination Complexes in Cancer Chemotherapy, Martinus Nijhoff Publishing, Boston, 684–694.

    Google Scholar 

  • Keppler, B.K., and Heim, M.E. (1988). Antitumor-Active Bis-ß-Diketonato Metal Complexes: Budotitane–A New Anticancer Agent. Drugs of the Future, 13, 5–6, 637–652.

    Google Scholar 

  • Keppler, B.K., Henn, M., Juhl, U.M., Berger, M.R., Niebl, R.E., and Wagner, F.E. (1989). New Ruthenium Complexes for the Treatment of Cancer. Progress in Clinical Biochemistry and Medicine, 10, 41–70.

    CAS  Google Scholar 

  • Keppler, B.K., Heim, M.E., Flechtner, H., Wingen, F., and Pool, B.L. (1989). Assessment of the Antitumor Activity of Budotitane in Three Different Transplantable Tumor Models, its Lack of Mutagenicity, and First Results of Clinical Phase I Studies. Arzneim.-Forsch./Drug Res. 39 (I), 6, 706–709.

    Google Scholar 

  • Keppler, B.K., and Vongerichten, H. (1989).

    Google Scholar 

  • Klenner, T., Keppler, B.K., Amelung, F., and Schmähl, D (1989). Aminotris(methylenephosphonato)diaminoplatinum(II) [AMDP], a New Anticancer Agent Superior to Cisplatin (CDDP) in the Transplantable Rat Osteosarcoma. 5. SEK-Symposium, Heidelberg, 10.-12.4.1989, Suppl. J. Cancer Res. Clin. Oncol. 115, TH 5.

    Google Scholar 

  • Klenner, T., Miinch, H., Wingen, F., Schmähl, D, and Keppler, B.K. (1988). Efficacy of New Cisplatin-linked Bisphosphonates in Transplantable Rat Osteosarcoma. Proc. 19th National Cancer Congress, Frankfurt, 28.2.-5.3.1988, J. Cancer Res. Clin. Oncol., Suppl. to Vol. 114.

    Google Scholar 

  • Knebel, N., and von Angerer, E. (1988). Platinum Complexes with Binding Affinity for the Estrogen Receptor. J. Medicinal Chem., 31, 1675–1679.

    CAS  Google Scholar 

  • Knebel, N., Schiller, Cl.-D., Schneider, M.R., Schönenberger, H., and von Angerer, E. (1989). Carrier Mediated Action of Platinum Complexes on Estrogen Receptor Positive Tumors. Eur. J. Cancer Clin. OncoL, 25, 2, 293–299.

    PubMed  CAS  Google Scholar 

  • Kociba, R.J., Sleight, S.D., and Rosenberg, B. (1970). Inhibition of Dunning Ascitic Leukemia and Walker 256 Carcinosarcoma with cis-Diamminedichloroplatinum (NSC 119875). Cancer Chemotherapy Reports (Part 1), 54, 5, 325–328.

    CAS  Google Scholar 

  • Köpf-Maier, P., and Köpf, H. (1988). Transition and Main-Group Metal Cyclopentadienyl Complexes: Preclinical Studies on a Series of Antitumor Agents of Different Structural Type. Structure and Bonding, 70, 105–181.

    Google Scholar 

  • Köpf-Maier, P., and Köpf, H. (1988). Antitumor Cyclopentadienyl Metal Complexes: Current Status and Recent Pharmacological Results. In: Gielen, M.F. (ed.), Metal-Based Anti-tumour Drugs, Freund Publishing House, London, 55–102.

    Google Scholar 

  • Krakoff, I.H. (1988). The Development of More Effective Platinum Therapy. In: M. Nicolini (ed.), Proc. of the 5th Int. Symp. on Platinum and other Metal Coordination Compounds in Cancer Chemotherapy, Martinus Nijhoff Publishing, Boston, 351–354.

    Google Scholar 

  • Kumano, N., Nakai, Y., Ishikawa, T., Koinumaru, S., Suzuki, S., Kikumoto, T., and Konno, K. (1980). Antitumor Effect of Organogermanium Compound (Ge-132) in Mouse Tumors. In: Nelson, J.D., and Grassi, C. (eds.), Current Chemotherapy and Infectious Disease, Proc. Int. Congr. Chemother. 11th, 1979, Am. Soc. Microbiol.,Washington, 1525–1527.

    Google Scholar 

  • Kumano, N., Ishikawa, T., Koinumaru, S., Kikumoto, T., Suzuki, S., Nakai, Y., and Konno, K. (1985). Antitumor Effect of the Organogermanium Compound Ge-132 on the Lewis Lung Carcinoma (3LL) in C57BL/6 (B6) Mice. Tohuku J. Exp. Med., 146, 97–104.

    CAS  Google Scholar 

  • Leopold, W.R., Miller, E.C., and Miller, J.A. (1979). Carcinogenicity of Antitumor cisPlatinum(11) Coordination Complexes in the Mouse and Rat. Cancer Res., 39, 913–918.

    PubMed  CAS  Google Scholar 

  • Lewis, A.J., and Walz, D.T. (1982). Immunopharmacology of Gold. In: G.P. Ellis, G.B. West (eds.), Progress in Medicinal Chem., 19, Elsevier Biomedical Press, 2–49.

    Google Scholar 

  • Lippard, St.J. (1981). Binding of the Antitumor Drug cis-Diamminedichloroplatinum(ll) to DNA and to the Nucleosome Core Particle. In: Ramaswamy H. Sarma (ed.), Bio-molecular Stereodynamics, Vol. II, 165–183, Adenine Press, New York.

    Google Scholar 

  • Litterst, Ch.L., LeRoy, A.F., Guarino, A.M. (1979). Disposition and Distribution of Platinum Following Parental Administration of cis-Dichlorodiammineplatinum(II) to Animals. Cancer Treatment Rep., 63, 9–10, 1485–1492.

    Google Scholar 

  • Lumme, P., Elo, H., and Jänne, J. (1984). Antitumor Activity and Metal Complexes of the First Transition Series. Trans-bis(salicylaldoximato)copper(II) and Related Copper(II) Complexes, a Novel Group of Potential Antitumor Agents. Inorganica Chimica Acta, 92, 241–251.

    CAS  Google Scholar 

  • Lumme, P.O., and Elo, H.O. (1985). Antitumor Activity and Metal Complexes, a Comparison. Inorganica Chimica Acta, 107, L15 - L16.

    CAS  Google Scholar 

  • Mattem, J., Keppler, B.K., and Volm, M. (1984). Preclinical Evaluation of Diethoxy(1phenyl-1,3-dionato)titanium(IV) in Human Tumor Xenografts. Arzneim.-Forsch./Drug Res. 34 (II), 10, 1289–1290.

    Google Scholar 

  • Miyao, K., Onishi, T., Asai, K., Tomizawa, S., and Suzuki, F. (1980). Toxicology and Phase I Studies on a Novel Organogermanium Compound, Ge-132. In: Nelson, J.D., and Grassi, C. (eds.), Current Chemotherapy and Infectious Disease, Vol. II, 1527–1529.

    Google Scholar 

  • Peyrone, M. (1844). Über die Einwirkung des Ammoniak auf Platinchlorür. Annalen der Chemie und Pharmacie, LI, 1 ff.

    Google Scholar 

  • Pinto, A.L., and Lippard, St.J. (1985). Binding of the Antitumor Drug cis-Diamminedichloroplatinum(II) (Cisplatin) to DNA. Biochimica et Biophysica Acta, 780, 167–180.

    PubMed  CAS  Google Scholar 

  • Pöldinger, W. (1982). Kompendium der Psychopharmakotherapie. Editiones Roche; Basel, 126.

    Google Scholar 

  • Prestayko, A.W. (1981). Clinical Pharmacology of Cisplatin. Cancer and Chemotherapy, III, 351–356.

    Google Scholar 

  • Reedijk, J. (1987). The mechanism of action of platinum anti-tumor drugs. Pure AppL Chem., 59 (2), 181–192.

    CAS  Google Scholar 

  • Rose, W.C., and Schurig, J.E. (1985). Preclinical Antitumor and Toxicologic Profile of Carboplatin. Cancer Treatment Rev., 12 ( Suppl. A), 1–19.

    Google Scholar 

  • Rosenberg, B., and VanCamp, L. (1969). Platinum Compounds: A New Class of Potent Antitumor Agents. Nature, 222, 385–386.

    PubMed  CAS  Google Scholar 

  • Rosenberg, B., and VanCamp, L. (1970). The Successful Regression of Large Solid Sarcoma 180 Tumors by Platinum Compounds. Cancer Res., 304, 1799–1802.

    Google Scholar 

  • Rosenberg, B. (1975). Possible Mechanisms for the Antitumor Activity of Platinum Coordination Complexes. Cancer Chemotherapy Rep. (Part 1), 59, 3, 589–598.

    Google Scholar 

  • Rosenberg, B. (1978). Platinum Complexes for the Treatment of Cancer. Interdisciplinary Science Reviews, 3, 2, 134–147.

    CAS  Google Scholar 

  • Rosenberg, B. (1978). Platinum Complex–DNA Interactions and Anticancer Activity. Biochemie, 60, 859–867.

    CAS  Google Scholar 

  • Sadler, P.J., Nasr, M., and Narayanan, V.L. (1984). The Design of Metal Complexes as Anticancer Agents. Proc. of the 4th Int. Symp. on Platinum Coordination Complexes in Cancer Chemotherapy, 290–304, Martinus Nijhoff Publishing, Boston.

    Google Scholar 

  • Sava, G., Giraldi, T., Mestroni, G., and Zassinovich, G. (1983). Antitumor Effects of Rhodium(I), Iridium (I), and Ruthenium(II) Complexes in Comparison with cis-Dichlorodiamminoplatinum(II). Chem.-Biol. Interactions, 45, 1–6.

    CAS  Google Scholar 

  • Sava, G., Zorzet, S., Giraldi, T., Mestroni, G., and Zassinovich, G. (1984). Antineoplastic Activity and Toxicity of an Organometallic Complex of Ruthenium(II) in Comparison with cis-PDD in Mice Bearing Solid Malignant Neoplasms. Eur. J. Cancer Clin. Oncol., 20, 6, 841–847.

    PubMed  CAS  Google Scholar 

  • Sava, G., Zorzet, S., Mestroni, G., and Zassinovich, G. (1985). Antineoplastic Activity of Planar Rhodium(I) Complexes in Mice Bearing Lewis Lung Carcinoma and P 388 Leukemia. Anticancer Res. 5, 249–252.

    PubMed  CAS  Google Scholar 

  • Scher, H.J., Curley, T., Geller, N., Dershaw, D., Chan, E., Nisselbaum, J., Alcock, N., Hollander, P., and Yagoda, A. (1987). Gallium Nitrate in Prostatic Cancer: Evaluation of Antitumor Activity and Effects on Bone Turnover. Cancer Treatment Rep., 71, 10, 887–893.

    CAS  Google Scholar 

  • Schmähl, D., and Berger, M.R. (1988). Possibilities and Limitations of Antineoplastic Chemotherapy: Experimental and Clinical Aspects. Int. J. Exp. Clin. Chemother. 1, 1–11.

    Google Scholar 

  • Schönenberger, H., Wappes, B., Jennerwein, M., and Berger, M. (1984). Entwicklung selektiv wirkender Platinkomplexe. In: S. Seeber et al. (eds.), Beiträge zur Onkologie, Bd. 18, 48–57, S. Karger Verlag Basel.

    Google Scholar 

  • Schwartz, S., and Yagoda, A. (1984). Phase I-II Trial of Gallium Nitrate for Advanced Hypernephroma. Anticancer Res., 4, 317–318.

    PubMed  CAS  Google Scholar 

  • Sherman, S E, Gibson, D., Wang, A.H.-J., and Lippard, St.J. (1985). X-Ray Structure of the Major Adduct of Anticancer Drug Cisplatin with DNA: cis-[Pt(NH3)2(d(pGpG)]. Science, 230, 412–417.

    PubMed  CAS  Google Scholar 

  • Sherman, S E, and Lippard, St.J. (1987). Structural Aspects of Anticancer Drug Interactions with DNA. Chem. Rev., 87, 1153–1181.

    CAS  Google Scholar 

  • Simon, T.M., Kunishima, D.H., Vibert, G.J., and Lorber, A. (1981). Screening Trial with the Coordinated Gold Compound Auranofin Using Mouse Lymphocytic Leukemia P 388. Cancer Research, 41, 94–97.

    PubMed  CAS  Google Scholar 

  • Slavik, M., Elias, L., Mrema, J., and Saiers, J.H. (1982). Laboratory and Clinical Studies of Spirogermanium, a Novel Heterocyclic Anticancer Drug. Drugs Exptl. Clin. Res. VIII (4), 379–385.

    Google Scholar 

  • Slavik, M., Blanc, O., and Davis, J. (1983). Spirogermanium: A New Investigational Drug of Novel Structure and Lack of Bone Marrow Toxicity. Invest. New Drugs, 1, 225–234.

    PubMed  CAS  Google Scholar 

  • Sternberg, C., Cheng, E., and Sordillo, P. (1984). Phase II Trial of 1,2-Diaminocyclohexane-(4-carboxyphthalato)platinum(II) (DACCP) in Colorectal Carcinoma. Am. J. Clin. Oncol. (CCT), 7, 503–505.

    CAS  Google Scholar 

  • Sugiya, Y., Sugita, T., Sakamaki, S., Abo, Y., and Satoh, H. (1986). Subacute and Chronic Intraperitoneal Toxicity of Carboxyethylgermaniumsesquioxide (Ge-132) in Rats. Oyo Yakuri, 32 (1), 93–111.

    CAS  Google Scholar 

  • Suzuki, F., Brutkiewicz, R.R., and Pollard, R.B. (1985). Ability of Sera from Mice Treated with Ge-132, an Organic Germanium Compound, to Inhibit Experimental Murine Ascites Tumours. Br. J. Cancer, 757–763.

    Google Scholar 

  • Suzuki, F., Brutkiewicz, R.R., and Pollard, R.B. (1985) Importance of T-Cells and Macrophages in the Antitumour Activity of Carboxyethylgermanium Sesquioxide (Ge-132). Anticancer Res., 5, 479–484.

    PubMed  CAS  Google Scholar 

  • Tsuruo, T., Lida, H., Tsukagoshi, S., and Sakurai, Y. (1980). Growth Inhibition of Lewis Lung Carcinoma by an Inorganic Dye, Ruthenium Red. Gann, 71, 151–154.

    PubMed  CAS  Google Scholar 

  • Tsutsui, M., Kakimoto, N., Axtell, D.D., Oikawa, H., and Asai, K. (1976). Crystal Structure of Carboxyethylgermanium Sesquioxide. J. Am. Chem. Soc., 98, 25, 8287–8289.

    CAS  Google Scholar 

  • USAN (1980). Spirogermanium Hydrochloride. Drugs of the Future, V, 3, 149–151.

    Google Scholar 

  • Vermorken, J.B., ten Bokkel Huinink, W.W., McVie, J.G., van der Vijgh, W.J.F., and Pinedo, H.M. (1984). Clinical Experience with 1,1-Diaminomethylcyclohexane (Sulfato) Platinum(II) (TNO-6). Dev. OncoL, 17, 330–343.

    CAS  Google Scholar 

  • Vermorken, J.B., Winograd, B., van der Vijgh, W.J.F. (1985). Clinical Pharmacology of Cisplatin and Some New Platinum Analogs. Recent Adv. Chemother., Proc. Int. Congr. Chemother., 14th, 96–99.

    Google Scholar 

  • Voegeli, R., Pohl, J., Hilgard, P., Engel, J., Schumacher, W., Brunner, H., Schmidt, M., Holzinger, U., and Schönenberger, H. (1988). Synthesis and Therapeutic Effect of New cis-Platinum Complexes on Experimental Tumors. In: Nicolini, M. (ed.), Proc. of the 5th Int. Symp. on Platinum and other Metal Coordination Compounds in Cancer Chemo-therapy, Martinus Nijhoff Publishing, Boston, 343–350.

    Google Scholar 

  • von Heyden, H.W., Weinstock, N., Schaper, R., Beyer, J.-H., Nagel, G.A., and Seidel, D. (1980). Platinkinetik: Literaturübersicht und erste eigene Ergebnisse. In: S. Seeber et al. (eds.), Beiträge zur Onkologie, Band 3, S. Karger Verlag Basel.

    Google Scholar 

  • Ward, S.G., and Taylor, R.C. (1988). Anti-Tumor Activity of the Main-Group Metallic Elements: Aluminum, Gallium, Indium, Thallium, Germanium, Lead, Antimony, and Bismuth. In: Gielen, M.F. (ed.), Metal-Based Anti-Tumour Drugs, Freund Publishing House, London, 1–54.

    Google Scholar 

  • Wingen, F., and Schmähl, D. (1985). Distribution of 3-Amino-l-hydroxypropane-1,1diphosphonic Acid in Rats and Effects on Rat Osteosarcoma. Arzneim.-Forsch./Drug Res. 35 (II), 10, 1565–1571.

    CAS  Google Scholar 

  • Zeller, W.J., and Berger, M.R. (1984). Chemically Induced Autochthonous Tumor Models in Experimental Chemotherapy. Behring Inst. Mitt. 74, 201–208.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keppler, B.K. (1990). The Role of Non-Platinum Complexes in Cancer Therapy. In: Gielen, M. (eds) Tin-Based Antitumour Drugs. NATO ASI Series, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74191-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74191-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74193-7

  • Online ISBN: 978-3-642-74191-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics