Skip to main content

Virus-Induced Glycanhydrolases and Effects of Oligosaccharide Signals on Plant-Virus Interactions

  • Conference paper
Signal Molecules in Plants and Plant-Microbe Interactions

Part of the book series: NATO ASI Series ((ASIH,volume 36))

Abstract

The hypersensitive response is one of the most efficient mechanisms of defence that is induced by the infection itself. Even though the triggering of the hypersensitivity reaction results from a very specific gene-for-gene recognition between plant and pathogen, what the plant does thereafter to defend itself appears to be specific only to the host. The alterations of host metabolism believed to participate in active defence include cell wall thickening resulting from production and deposition of various macromolecules, and the production of defence enzymes and proteins. Among the cell wall macromolecules are lignins and other phenolic polymers, polysaccharides such as callose, and proteins such as the hydroxyproline rich glycoproteins. Defence enzymes fall into two classes: enzymes that catalyze the production of various metabolites participating in resistance (ethylene, phytoalexins, aromatic compounds, oxidized metabolites), and direct defence enzymes (hydrolases such as chitinases and glucanases). The defence proteins include inhibitors of microbial proteases or of polygalacturonases and “pathogenesis-related” (PR) proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albersheim P, Darvill AG (1985) Oligosaccharins. Sci Am 253:44–50

    Article  Google Scholar 

  • Boiler T, Gehri A, Mauch F, Vögeli U (1983) Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta 157:22–31

    Article  Google Scholar 

  • Cornelissen BJC, Hooft van Huijsduijnen RAM, van Loon LC, Bol JF (1986) Molecular characterization of the messenger RNAs for ‘pathogenesis-related’ proteins la, lb and lc, induced by TMV infection of tobacco. EMBO J 5:37–40

    CAS  PubMed  Google Scholar 

  • Darvill AG, Albersheim P (1984) Phytoalexins and their elicitors- a defense against microbial infection in plants. Annu Rev Plant Physiol 35:243–275

    Article  CAS  Google Scholar 

  • Davis KR, Darvill AG, Albersheim P (1986) Host-pathogen interactions XXI Several biotic and abiotic elicitors act synergistically in the induction of phytoalexin accumulation in soybean. Plant Mol Biol 6:23–32

    Article  CAS  PubMed  Google Scholar 

  • Felix G, Meins J (1985) Purification, immunoassay and characterization of an abundant, cytokinin-regulated polypeptide in cultured tobacco tissues. Evidence the protein is a β-1,3-glucanase. Planta 164:423–428

    Article  CAS  PubMed  Google Scholar 

  • Fortin MG, Parent JG, Asselin A (1985) Comparative study of two groups of b proteins (pathogenesis-related) from the intercellular fluid of Nicotiana leaf tissue infected by TMV. Can J Bot 63:932–93

    CAS  Google Scholar 

  • Fritig B, Kauffmann S, Dumas B, Geoffroy P, Kopp M, Legrand M (1987) Mechanism of the hypersensitivity reaction of plants. In: Evered D, Harnett S (eds) Ciba Foundation Symposium 133: Plant Resistance to Viruses. John Wiley & Sons, Chichester, pp 92–108

    Google Scholar 

  • Gianinazzi S, Martin C, Vallée JC (1970) Hypersensibilité aux virus, température et protéines solubles chez le Nicotiana Xanthi ne. Apparition de nouvelles macromolécules lors de la répression de la synthèse virale. C R Acad Sci (Paris) D270:2383–2386

    Google Scholar 

  • Granell A, Bellés JM, Conejero V (1987) Induction of pathogenesis-related proteins in tomato by citrus exocortis viroid, silver ion and ethephon. Physiol Mol Plant Pathol 31:83–90

    Article  CAS  Google Scholar 

  • Hahn MG, Bucheli P, Cervone F, Doares SH, O’Neil RA, Darvill A, Albersheim P (1989) The roles of cell wall constituents in plant pathogen interactions. In: Nester E, Kosuge T. (eds) Plant-Microbe Interactions, Volume 3, Macmillan Press, (in the press).

    Google Scholar 

  • Hooft van Huijsduijnen RAM, Kauffmann S, Brederode FT, Cornelissen BJC, Legrand M, Fritig B, Bol J (1987) Homology between chitinases that are induced by TMV infection of tobacco. Plant Mol Biol 9:411–420

    Article  Google Scholar 

  • Jamet E, Fritig B (1986) Purification and characterization of 8 of the pathogenesis-related proteins in tobacco leaves reacting hypersensitively to tobacco mosaic virus. Plant Mol Biol. 6:69–80

    Article  CAS  PubMed  Google Scholar 

  • Kauffmann S (1988) Les protéines PR (Pathogenesis-Related) du Tabac: Des protéines impliquées dans les réactions de défense aux agents phytopathogènes. Isolement, propriétés sérologiques et activités biologiques. Thèse de l’Université Louis Pasteur, Strasbourg

    Google Scholar 

  • Kauffmann S, Legrand M, Geoffroy P, Fritig B (1987) Biological function of ‘pathogenesis-related’; proteins: four PR proteins of tobacco have 1,3-ß-glucanase activity. EMBO J 6:3209–3212

    CAS  PubMed  Google Scholar 

  • Kombrink E, Schröder M, Hahlbrock K (1988) Several “pathogenesis-related” proteins in potato are 1,3-ß glucanases and chitinases. Proc Natl Acad Sci USA 85:782–786

    Article  CAS  PubMed  Google Scholar 

  • Kopp M, Rouster J, Fritig B, Darvill A, Albersheim P (1989) Host-pathogen interactions XXXII. A fungal glucan preparation protects Nicotianae against infection by viruses. Plant Physiol 90:208–216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lamb CJ, Lawton MA, Dron M, Dixon RA (1989) Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56:215–224

    Article  CAS  PubMed  Google Scholar 

  • Legrand M, Kauffmann S, Geoffroy P, Fritig B (1987) Biological function of “pathogenesis- related” proteins: four tobacco PR-proteins are chitinases. Proc Natl Acad Sci USA 84:6750–6754

    Article  CAS  PubMed  Google Scholar 

  • Linthorst HJM, Meuwissen RLJ, Kauffmann S, Bol J (1989) Constitutive expression of pathogenesis-related proteins PR-1, GRP, and PR-S in tobacco has no effect on virus infection. The Plant Cell 1:285–291

    CAS  PubMed Central  PubMed  Google Scholar 

  • McNeil M, Darvill AG, Fry SC, Albersheim P (1984) Structure and function of the primary cell walls of plants. Annu Rev Biochem 53:625–663

    Article  CAS  PubMed  Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolase in pea tissue. H Inhibition of fungal growth by combinations of chitinase and ß-l,3-glucanase. Plant Physiol 88: 936–942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Métraux JP, Boller T (1986) Local and systemic induction of chitinase in cucumber plants in response to viral, bacterial and fungal infections. Physiol Mol Plant Pathol 28:161–169

    Article  Google Scholar 

  • Modderman PW, Schot CP, Klis FM, Wieringa-Brants DH (1985) Acquired resistance in hypersensitive tobacco against tobacco mosaic virus, induced by plant cell wall components. Phytopathol Z 113:165–170

    Article  Google Scholar 

  • Moore AE, Stone B A (1972) Effect of infection with TMV and other viruses on the level of a ß-l,3-glucan hydrolase in leaves of Nicotiana glutinös a. Virology 50:791–798

    Article  CAS  PubMed  Google Scholar 

  • Ryan CA (1987) Oligosaccharide signalling in plants. Annu Rev Cell Biol 3:295–317

    Article  CAS  PubMed  Google Scholar 

  • Ryan CA (1988) Oligosaccharides as recognition signals for the expression of defensive genes in plants. Biochemistry 27:8879–8883

    Article  CAS  Google Scholar 

  • Schlumbaum A, Mauch F, Vögeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324:365–367

    Article  CAS  Google Scholar 

  • Shinshi H, Mohnen D, Meins F (1987) Regulation of a plant pathogenesis-related enzyme: inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc Natl Acad Sci USA 84:89–93

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LC (1982) Regulation of changes in proteins and enzymes associated with the active defence against virus infection. In: Wood RKS (ed) Active defence mechanisms in plants. Plenum, NY, p. 247–274

    Chapter  Google Scholar 

  • Van Loon LC (1985) Pathogenesis-related proteins. Plant Mol Biol 4:111–116

    Google Scholar 

  • Van Loon LC, van Kämmen A (1970) Polyacrylamide disc electropheresis of the soluble leaf proteins from Nicotiana tabacum var. “Samsun” and “Samsun NN“. Changes in protein constitution after infection with TMV. Virology 40:199–201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fritig, B. et al. (1989). Virus-Induced Glycanhydrolases and Effects of Oligosaccharide Signals on Plant-Virus Interactions. In: Lugtenberg, B.J.J. (eds) Signal Molecules in Plants and Plant-Microbe Interactions. NATO ASI Series, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74158-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74158-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74160-9

  • Online ISBN: 978-3-642-74158-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics