Nodulation Genes and Their Regulation in Rhizobium Meliloti

  • Sharon R. Long
  • Julie Schwedock
  • Thomas Egelhoff
  • Melanie Yelton
  • John Mulligan
  • Melanie Barnett
  • Brenda Rushing
  • Robert Fisher
Part of the NATO ASI Series book series (ASIH, volume 36)

Abstract

Our long term goals are to study the interaction of Rhizobium and plants at the molecular and cellular levels. Our system of study is Rhizobium meliloti and its host plants such as alfalfa (Medicago sativa L.). The approaches we use are primarily to combine genetic analysis of nodulation with microscopic observation of normal and mutant bacteria during interaction with plants. Our recent work includes the definition of two new nodulation genes, and the further characterization of the network for regulation of nodulation genes in Rhizobium meliloti. One theme found in both these studies is the complexity arising from multiple gene copies in R. meliloti.

Keywords

Codon Polysaccharide Flavonoid Microbe Rhizobium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burn J, Rossen L, Johnston, AWB (1987) Four classes of mutations in the nodD gene of Rhizobium leguminosarum biovar viciae that affect its ability to autoregulate and/or activate other nod genes in the presence of flavonoid inducers. Genes Dev 1:356–464CrossRefGoogle Scholar
  2. Cervantes E, Sharma SB. Maillet F, Vasse Jf Truchet G, Rosenberg C (to be published) The Rhizobium meliloti host-range nodQ gene encodes a protein which shares homology with translation elongation and initiation factors. Molecular MicrobiolGoogle Scholar
  3. Debellé& F, Rosenberg C, Vasse J, Maillet F, Martinez E, Dénari& J, Truchet, G (1986) Assignment of symbiotic developmental phenotypes to common and specific nodulation (nod) genetic oci of Rhizobium meliloti. J Bacteriol 168:1075–1086Google Scholar
  4. Downie JA Johnston AWB (1988) Nodulation of legumes by Rhizobium. Plant, Cell and Environ 11:403–412CrossRefGoogle Scholar
  5. Finan TM, Hirsch AM, Leigh JA, Johansen E, Kuldau GA, Deegan S, Walker GC, Signer ER (1985) Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell 40:869–877PubMedCrossRefGoogle Scholar
  6. Fisher RF, Long SR (submitted) DNA footprint analysis of the transcriptional activator proteins NodDl and NodD3 on inducible nod gene promoters. J Biol ChemGoogle Scholar
  7. Fisher RF, EgeTKoff TT, Mulligan JT, Long SR (1988) Specific binding of proteins from Rhizobium meliloti cell-free extracts containing NodD to DNA sequences upstream of inducible nodulation genes. Genes Dev 2:282–293PubMedCrossRefGoogle Scholar
  8. Fisher RF, Swanson Jf Mulligan JT, Long SR (1987) Extended region of nodulation genes in Rhizobium meliloti 1021. II. Nucleotide sequence, transcription start sites, and protein products. Genetics 117:191–201Google Scholar
  9. Gdttfert M, Horvath B, Kondorosi E, Putnoky P, Rodriguez-Quinones F, Kondorosi A (1986) At least two noaD genes are necessary for efficient nodulation of alfalfa by Rhizobium meliloti. J Mol Biol 191:411–420CrossRefGoogle Scholar
  10. Honma MA, Ausubel FM (1987) Rhizobium meliloti has three functional copies of the nodU symbiotic regulatory gene. Proc Natl Acad Sci USA 84:8558–5862PubMedCrossRefGoogle Scholar
  11. Kondorosi E, Gyuris J, Schmidt J, John M, Duda E, Hoffmann B, Schell J, Kondorosi A (to be published) Positive and negative control of nod gene expression in Rhizobium meliloti is required for optimal nodulation. EMBO JGoogle Scholar
  12. Long SR (1989) Rhizobium-legume nodulation: Life together in the underground. Cell 56:203–214PubMedCrossRefGoogle Scholar
  13. Long SR, Peters NK, Mulligan JT, Dudley ME (1986) Genetic analysis of Rhizobium-plant interactions. In: Lugtenberg B (ed) Recognition in microbe-plant symbiotic and pathogenic interactions, vol 4. Springer-Verlag Berlin, p 1–15CrossRefGoogle Scholar
  14. Mulligan JT, Long SR (1985) Induction of Rhizobium meliloti noaC expression by plant exudate requires nodD. Proc Natl Acad Sci USA 82:6609–6613PubMedCrossRefGoogle Scholar
  15. Mulligan JT, Long SR (1989) A family of activator genes regulates expression of Rhizobium meliloti nodulation genes. Genetics 122:7–18PubMedGoogle Scholar
  16. Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:917–1008CrossRefGoogle Scholar
  17. Rostas K, Kondorosi E, Horvath B, Simoncsits A, Kondorosi A (1986) Conservation of extended promoter regions of nodulation genes in Rhizobium. Proc Natl Acad Sci USA 83:1757–1761PubMedCrossRefGoogle Scholar
  18. Schwedock J, Long SR (1989) Nucleotide sequence and protein products of two new nodulation genes of Rhizobium meliloti, nodP and nodQ. Mol Plant-Microbe Int 2:181–194CrossRefGoogle Scholar
  19. Spamk HP, Okker RJH, Wiiffelman CA, Pees E, Lugtenberg BE J (1987) Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRLlJI. Plant Mol Biol 9:29–37Google Scholar
  20. Vieille C, Onyeocha I, Baca B-E, Palacios R, Flores M, Elmerich C Genetic analysis of a 90 Md plasmid of Azospirillum brasilense sp7. In: Palacios R, Verma DPS (eds) Molecular Genetics of Plant Microbe Interactions. APS Press, St Paul, MN p 209Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Sharon R. Long
    • 1
  • Julie Schwedock
    • 1
  • Thomas Egelhoff
    • 1
  • Melanie Yelton
    • 1
  • John Mulligan
    • 1
  • Melanie Barnett
    • 1
  • Brenda Rushing
    • 1
  • Robert Fisher
    • 1
  1. 1.Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations