Skip to main content

Molecular Biology of Chemotaxis in Agrobacterium

  • Conference paper
Signal Molecules in Plants and Plant-Microbe Interactions

Part of the book series: NATO ASI Series ((ASIH,volume 36))

Abstract

Our interest in Chemotaxis stems from the concept that unless bacteria are present in huge numbers, and evenly distributed throughout the soil, they must arrive from somewhere to interact with a plant. Agrobaeterium tumefaeiens thus possesses a multifunctional system capable of triggering either Chemotaxis or gene-induction depending upon the ligand concentration, as part of an intricate mechanism for sensing and guiding A. tumefaeiens towards wounded cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adler J (1973) A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coti. J. Gen Micro 74:77–91

    Article  CAS  Google Scholar 

  • Aguilar JMM, Ashby AM, Richards AJM, Loake GJ, Watson MD, Shaw CH (1988) Chemotaxis of Rhizobium teguminosarum biovar phaseoti towards flavonoid inducers of the symbiotic nodulation genes. J Gen Micro 134:2741–2746

    Google Scholar 

  • Armitage JP, Gallagher A, Johnston AWB (1988) Comparison of the chemotactic behaviour of Rhizobium teguminosarum with and without the nodulation Plasmid. Motec Micro 2:743–749

    Article  CAS  Google Scholar 

  • Ashby AM, Watson MD, Shaw CH (1987) A Ti-plasmid determined function is responsible for chemotaxis towards the plant wound product aceto- syringone. FEMS Micro Letts 41:189–192

    Article  CAS  Google Scholar 

  • Ashby AM, Watson MD, Loake GJ, Shaw CH (1988) Ti-plasmid specified chemotaxis of Agrobacterium tumefaciens C58C1 to vir-inducing phenolics and soluble factors from monocotyledonous and dicotyledonous plants. J. Bacteriot 170:4181–4187

    CAS  Google Scholar 

  • Bolton GW, Nester EW, Bordon MP (1986) Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science 232:983–985

    Article  CAS  PubMed  Google Scholar 

  • Caetano-Anolles G, Crist-Estes DK, Bauer D (1988) Chemotaxis of Rhizobium metitoti to the plant flavone luteolin requires functional nodulation genes. J Bacteriot 170:3164–3169

    CAS  Google Scholar 

  • Gotz R, Schmitt R (1987)Rhizobium metitoti swims by unidirectional intermittent rotation of right-handed flagellar helices. J Bacteriot 169:3146–3150

    CAS  Google Scholar 

  • Hawes MC, Smith LY, Howarth AJ (1988) Agrobacaterium tumefaciens mutants deficient in chemotaxis to root exudates. Motec Ptant-Microbe Interact 1:182–186

    Article  Google Scholar 

  • Hess JF, Oosawa K, Kaplan N, Simon MI (1988) Phosphorylation of three proteins in the signalling pathway of bacterial Chemotaxis. Cell 53: 79–87

    Article  CAS  PubMed  Google Scholar 

  • Kehry MR, Dahlquist FW (1982) The methyl-accepting Chemotaxis proteins of Escherichia colii identification of the multiple methylation sites on methyl-accepting Chemotaxis protein I. J Biol Chem 257:10378–10386

    CAS  PubMed  Google Scholar 

  • Kehry MR, Engstrom P, Dahlquist FW, Hazelbauer GL (1983) Multiple covalent modifications of Trg a sensory transducer of Escherichia coli. J Biol Chem 258:5050–5055

    CAS  Google Scholar 

  • Leroux B, Yanofsky MF, Winans SC, Ward JE, Ziegler SF, Nester EW (1987) Characterisation of the virA locus of Agrobacterium tumefaciens-. a transcriptional regulator and host range determinant. EMB0 Journal 6:849–856

    CAS  Google Scholar 

  • Loake GJ, Ashby AM, Shaw CH (1988) Attraction of Agrobacterium tumefaciens C58C1- towards sugars involves a highly sensitive Chemotaxis system. J Gen Micro 134:1427–1432

    CAS  Google Scholar 

  • Loake GJ, King TJ, Shaw CH (1989) Involvement of a methionine-dependent MCP system in chemotactic responses of Agrobacterium tumefaciens. Manuscript in preparation

    Google Scholar 

  • Loake GJ, Shaw CH (1989) Isolation and characterisation of Chemotaxis and motility mutants of Agrobacterium tumefaciens. Manuscript in preparation

    Google Scholar 

  • Melchers LS, Thompson DV, Idler KB, Schilperoort RA, Hooykaas PJJ (1986) Nucleotide sequence of the virulence gene virG of the Agrobacterium tumefaciens octopine Ti-plasmid: significant homology between virG and the regulatory genes ompR phoB and dye of Escherichia coli. Nucl Acids Res 14:9933–9942

    Article  CAS  Google Scholar 

  • Ninfa AJ, Magasanik B (1986) Covalent modification of the glnG product NRI by the glnl product NRII regulates the transcription of the gln&LG operon in Escherichia coli. Proc Natl Acad Sci USA 83:5909–5913

    Article  CAS  Google Scholar 

  • Ninfa AJ, Reitzer LJ, Magasanik B (1987) Initiation of transcription at the bacterial glnAp2 promoter by purified E.coli components is facilitated by enhancers. Cell 50:1039–1046

    Article  CAS  PubMed  Google Scholar 

  • Oosawa K, Hess JF, Simon MI cheA mutants defective in Chemotaxis show modified protein phosphorylation. Cell 53:89–96

    Google Scholar 

  • Parke D, Ornston LN, Nester EW (1987) Chemotaxis in plant phenolic inducers of virulence genes is constitutively expressed in the absence of the Ti-plasmid in Agrobacterium tumefaciens. J Bacteriol 169:5336–5338.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rogowsky PM, Close TJ, Chimera JA, Shaw JJ, Kado CI (1987) Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J Bacteriol 169:5101–5112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schroth MN, Weinhold AR, McCain AH, Hildebrand DC, Ross N (1971) Biology, control of Agrobacterium tumefaciens. Hilgardia 40:536–552

    Google Scholar 

  • Shaw CH, Ashby AM, Watson MD (1986) Plant tumour induction. Nature 324:415

    Article  Google Scholar 

  • Shaw CH, Ashby AM, Brown A, Royal C, Loake GJ, Shaw CH (1988) VirA & G are the Ti-plasmid functions required for Chemotaxis of Agrobacterium tumefaciens towards acetosyringone. Molec Micro 2:413–418

    Article  CAS  Google Scholar 

  • Shaw CH, King TJ, Duffell A, Loake GJ (1989) Acetosyringone Chemotaxis in Ecoli requires virA cheA B I & Z motA & B but not virG. Manuscript in preparation

    Google Scholar 

  • Springer MS, Goy MF, Adler J (1979) Protein methylation in behavioural control mechanisms and in signal transduction. Nature 280:279–284

    Article  CAS  PubMed  Google Scholar 

  • Springer WR, Koshland DE (1977) Identification of a protein methyltransferase as the cheR gene product in the bacterial sensing system. Proc Natl Acad Sci USA 74:533–537

    Article  CAS  PubMed  Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaoiens. Nature 318:624–629

    Article  Google Scholar 

  • Stock A, Chen T, Welsh D, Stock J (1988) CheA protein a central regulator of bacterial chemotaxis belongs to a family of proteins that control gene expression in response to changing environmental conditions. Proc Natl Acad Sci USA 85:1403–1407

    Article  CAS  PubMed  Google Scholar 

  • Stock JB, Koshland DE (1978) A protein methylesterase involved in bacterial chemosensing. Proa Natl Aead Sci USA 75:3659–3663

    Article  CAS  Google Scholar 

  • Terwilliger TC, Wang JY, Koshland DE (1986) Surface structure recognised for covalent modification of the aspartate receptor in chemotaxis. Proe Natl Acad Sci USA 8.3:6707–6710

    Article  Google Scholar 

  • Winans SC, Ebert PR, Stachel SE, Gordon MP, Nester EW (1986) A gene essential for Agrobacterium virulence is homologous to a family of positive regulatory loci. Proc Natl Acad Sci USA 83:8278–8282

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shaw, C.H., Loake, G.J., Brown, A.P., Garrett, C.S. (1989). Molecular Biology of Chemotaxis in Agrobacterium . In: Lugtenberg, B.J.J. (eds) Signal Molecules in Plants and Plant-Microbe Interactions. NATO ASI Series, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74158-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74158-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74160-9

  • Online ISBN: 978-3-642-74158-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics