Skip to main content

Part of the book series: NATO ASI Series ((ASIH,volume 33))

Abstract

The capillary network, with its unique morphological and enzymatic properties, forms a dynamic interface between the blood and the cerebral parenchyma and actively participates to the regulation of the neuronal microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bates D, Weinshilboum RM, Campbell RJ and Sundt MT Jr (1977) The effect of lesions of the locus coeruleus on the physiological responses of the cerebral blood vessels in cats. Brain Res 136: 431–443

    Article  PubMed  CAS  Google Scholar 

  • Burns EM, Kruckeberg TW, Comerford LE and Buschman MBT (1979) Thinning of capillary wall and declining number of endothelial mitochondria in the cerebral cortex of the aging primate, Macaca nemestrine. J Geront 34: 642–650

    Google Scholar 

  • Dastur DK (1985) Cerebral blood flow and metabolism in normal hunam aging, pathological aging and senile dementia. J Cereb Blood Flow Metab 5: 1–9

    Article  PubMed  CAS  Google Scholar 

  • DeLeon MJ, Ferris SH, George AE, Reisberg B, Chistman DR, Kricheff II, Wolf AP (1983) Computed tomography and positron emission tomography evaluation of normal aging and Alzheimer’s disease. J Cereb Blood Flow Metab 3: 391–394

    Article  CAS  Google Scholar 

  • Ferrarese C, Bassi S, Frattola L, Loactelli P, Piolti R, Trabucchi M (1986) Different patterns of CSF neurotransmitter metabolism in patients with left or right hemispheric stroke. Acta Neurol Scand 73: 581–585

    Article  PubMed  CAS  Google Scholar 

  • Garcia JH, Ben-David E, Conger KA, Geer JL and Hollander WA (1981) Arterial hypertension injures brain capillaries. Stroke 12: 410–414

    Article  PubMed  CAS  Google Scholar 

  • Geschwind N, Galaburda AM (1985) Cerebral lateralization. Biological mechanisms, associations and pathology: I - A hypothesis and a program for research. Arch Neurol 42:428– 459

    Google Scholar 

  • Greenberg LH, Weiss B (1977) Beta-adrenergic receptors in aged rat brain: Reduced number and capacity of pineal gland to develop supersensitivity. Science 201: 61–63

    Google Scholar 

  • Greenberg LH, Dix RK, Weiss B (1978) Age-related changes in the binding of 3H-dihydroalprenolol in rat brain. Adv Exp Med Biol 97: 245–249

    PubMed  CAS  Google Scholar 

  • Harik SI (1986) Blood-brain barrier sodium/potassium pump: modulation by central noradrenergic innervation. Proc Natl Acad Sci USA 83: 4067–4070

    Article  PubMed  CAS  Google Scholar 

  • Hartman BK, Zide D and Udenfriend S (1972) The use of dopamine beta-hydroxylase as a marker for the central noradrenergic nervous system in rat brain. Proc Natl Acad Sci USA 69: 2722–2726

    Article  PubMed  CAS  Google Scholar 

  • Hunziker 0, Adbel1 as S, Shulz V (1979) The aging human cerebral cortex: a stereological characterization of changes in the capillary network. J Gerontol 34: 345–350

    Google Scholar 

  • Johansson B, Li CL, Olsson Y and Klatzo I (1970) The effect of acute arterial hypertension on the blood-brain barrier to ptroein tracers. Acta Neuropath 16: 117–127

    Article  PubMed  CAS  Google Scholar 

  • Joo F et al (1975) cAMP-mediated regulation of the permeability in the brain capillaries. Experientia 32:582– 583

    Google Scholar 

  • Klisz D (1978) Neurophysiological evaluation in older persons In: Storendt M, Siegler IC, Elias MF (eds) The Clinical Physiology of Aging. Plenum Press New York pp 71–96.

    Google Scholar 

  • Kobayashi H, Memo M, Spano PF and Trabucchi M (1981a) Identification of beta-adrenergic receptor binding sites in rat brain microvessels using 1251-iodohydroxybenzylpindolol. J Neurochem 36: 1383–1388

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H, Maoret T, Ferrante M, Spano PF and Trabucchi M (1981b) Subtypes of beta-adrenergic receptors in rat cerebral microvessels. Brain Res 220: 194–197

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H, Frattola L, Ferrarese C, Spano PF and Trabucchi M (1982a) Characterization of beta-adrenergic receptors on human cerebral microvessels. Neurology 32: 1384–1387

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Maoret T, Spano PF, Trabucchi M (1982b) Effect of age on beta-adrenergic receptors on cerebral microvessels. Brain Res 244: 374–377

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H, Wada A, Izumi F, Magnoni MS and Trabucchi M (1985) Alpha adrenergic receptors in cerebral microvessels of normotensive and spontaneously hypertensive rats. Circulation Res 56: 402–409

    PubMed  CAS  Google Scholar 

  • Magnoni MS, Kobayashi H, Cazzaniga A, Izumi F, Spano PF and Trabucchi M (1983) Hypertension reduces the number of beta- adrenergic receptors in rat brain microvessels. Circulation Res 67: 610–613

    Article  CAS  Google Scholar 

  • Magnoni MS, Kobayashi H, Trezzi E, Catapano A, Spano PF and Trabucchi M (1984) Beta-adrenergic receptors in brain microvessels of diabetic rats. Life Sci 34: 1095–1100

    Article  PubMed  CAS  Google Scholar 

  • Magnoni MS, Kobayashi H, Frattola L, Spano PF, Trabucchi M (1985) Effect of common carotid occlusion on beta adrenergic receptor function in cerebral microvessels. Stroke 16: 505–509

    Article  PubMed  CAS  Google Scholar 

  • Magnoni MS, Frattola L, Pasinetti G, Govoni S, Battaini F, Trabucchi M (1986a) Time-related asymmetric changes of brain microvessel beta-adrenergic receptors in the two hemispheres after carotid occlusion. Stroke 17: 966–96

    Article  PubMed  CAS  Google Scholar 

  • Magnoni MS, Kobayashi H, Govoni S, Battaini F, Pasinetti G, Trabucchi M (1986b) Partial reversal of the asymmetry in microvessel neurochemical changes following ischemia by corpus callosum section. Circulation 73: 784–788

    Article  PubMed  CAS  Google Scholar 

  • Magnoni MS, Frattola L, Piolti R, Govoni S, Kobayashi H, Trabucchi M (1988a) Glial brain tumors lack microvascular adrenergic receptors. Eur Neurol 28: 27–29

    Article  PubMed  CAS  Google Scholar 

  • Magnoni MS, Govoni S, Kobayashi H, Battaini F and Trabucchi M (1988b) Aging modifies the asymmetry in brain microvascular regulation. Stroke 19: 38–41

    Article  PubMed  CAS  Google Scholar 

  • Malfara A, Jones B (1979) Hemispheric asymmetries in motor control of guided reaching with and without optic displacement. Neuropsychology 19: 483–486

    Google Scholar 

  • McKenzie ET, McCulloch J and 0’Keane M (1976) Influence of endogenous norepinephrine on cerebral blood flow and metabolism. Am J Physiol 231: 489–495

    Google Scholar 

  • Neri A, Agazzani E (1984) Aging and right-left asymmetry in experimental pain measurement. Pain 19: 43–48

    Article  PubMed  CAS  Google Scholar 

  • Palmer GC (1978) Diminished adenyate cyclase responses in frontal cortex and cerebral capillaries of spontaneously hypertensive rats. Biochem Pharmac 28: 2847–2848

    Article  Google Scholar 

  • Palmer GC, Wilson GL, Palmer SJ and Chronister B (1982) Streptoxotocin-induced diabetes influences receptor activation of adenylate cyclase in rat retina, microvessels, cerebrum and pia arachnoid. Fed Proc 41: 1223

    Google Scholar 

  • Pradahan SN (1980) Central neurotransmitters and aging. Life Sci 26: 1643–1656

    Article  Google Scholar 

  • Raichle ME, Hartman BK, Eichlins JO and Sharpe LG (1975) Central noradrenergic regulation of cerebral blood flow and vascular permeability. Proc Natl Acad Sci USA 72:3726– 3730

    Google Scholar 

  • Rennels ML and Nelson E (1975) Capillary innervation in the mamalian central nervous system. An electron microscopic demonstration. Am J Anat 144: 233–241

    Article  PubMed  CAS  Google Scholar 

  • Schivers RR (1979) Effect of hyperglicemia on brain capillary permeability in the lizard anolis carolinensis. Brain Res 170: 509–522

    Article  Google Scholar 

  • Spatz M, Marsulja BB, Wroblewska B, Merkel N, Bembry J (1986) Modulation of glycogen metabolism in cerebromicrovascular smooth muscle and endothelial cultures. Biochem Biophys Res Comm 134: 484–491

    Article  PubMed  CAS  Google Scholar 

  • Stauber WT, Ong SH and McCuskey RS (1981) Selective extra- vascular escape of albumin into the cerebral cortex of the diabetic rat. Diabetes 30: 500–503

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW, Connelly MA and Hartman B.K (1977) Ultrastructural evidence for central monoaminergic innervation of blood vessels in the paraventricular nucleus of the hypothalamus. Brain Res 136: 166–173

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Magnoni, M.S., Govoni, S., Battaini, F., Trabucchi, M. (1989). Biochemical Changes of Brain Microvessels during Aging. In: Battaini, F., Govoni, S., Magnoni, M.S., Trabucchi, M. (eds) Regulatory Mechanisms of Neuron to Vessel Communication in the Brain. NATO ASI Series, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74152-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74152-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74154-8

  • Online ISBN: 978-3-642-74152-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics