Skip to main content

Part of the book series: NATO ASI Series ((ASIH,volume 33))

  • 137 Accesses

Abstract

The highest level of integrative brain function requires homeostasis and isolation of the internal milieu of the brain. Homeostasis and isolation are accomplished by a constellation of brain capillary wall morphological, biochemical, and physiological mechanisms that constitute the blood-brain barrier (BBB). The ultrastructural basis of the BBB consists of tight interendothelial junctions, the absence of endothelial pores, a paucity of pinocytotic vesicles, and an increased numerical density of endothelial mitochondria. The endothelial membrane is supported by pericytes, basal lamina, and astrocytic end-foot processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adinolfi M (1985) The development of the human blood-CSF-brain barrier. Dev Med and Child Neurol 27: 532–537.

    Article  CAS  Google Scholar 

  • Bar T (1978) Morphometric evaluation of capillaries in different laminae of rat cerebral cortex by automatic image analysis: Changes during development and aging. In: J Cervos-Navarro, E Betz, G Ebhardt, R Ferszt, B Wullenweber (eds). Advances in Neurology, vol 20, Pathology of Cerebro¬spinal Microcirculation, Plenum Press, New York, pp 1–9.

    Google Scholar 

  • Bar T, Wolff J R (1973) Quantitative Beziehungen zwischen der Verzweig ungsdichte und Lange von Capillaren im Neocortex der Ratte wahrend der postnatalen Entwicklung. Z Anat EntwGesch 141: 207–228.

    Article  CAS  Google Scholar 

  • Bar T, Wolff J R (1976) Development and adult variations of the wall of brain capillaries in the neocortex of rat and cat. In: J Cervos-Navarro, E Betz, F Matakas, R Wullenweber (eds) The Cerebral Vessel Wall, Raven Press, New York, pp 1–6.

    Google Scholar 

  • Bradbury M B W (1984) The structure and function of the blood-brain barrier. Fed Proc 43: 186–190.

    PubMed  CAS  Google Scholar 

  • Brightman M W & Reese T S (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40: 648–677.

    Article  PubMed  CAS  Google Scholar 

  • Bundgaard M (1982) Ultrastructure of frog cerebral and pial microvessels and their impermeability to lanthanum ions. Brain Res 241: 57–65.

    Article  PubMed  CAS  Google Scholar 

  • Bundgaard M (1986) Pathways across the vertebrate blood-brain barrier: Morphological viewpoints. In H F Cserr (ed) The Neuronal Microenvironment. Annals of the New York Academy of Sciences. 481: 7–19.

    Google Scholar 

  • Burns E M, Kruckeberg T W, Comerford L E, Buschmann MB T (1979) Thinning of capillary walls and declining numbers of endothelial mitochondria in the cerebral cortex of the aging primate, Macaca nemestrina. J Geront 34: 642–650.

    PubMed  CAS  Google Scholar 

  • Burns E M, Kruckeberg T W, Gaetano P K (1981) Changes with age in cerebral capillary morphology. Neurobiol of Aging, 2: 285–291.

    Article  Google Scholar 

  • Burns E M, Kruckeberg T W, Gaetano P K, Shulman L M (1983) Morphological changes in cerebral capillaries with age. In: J Cervos-Navarro, H I Sarkander (eds) Brain Aging: Neuropathology and Neuropharmacology, New York: Raven Press, pp 115–132.

    Google Scholar 

  • Caley D W, Maxwell D W (1970) Development of the blood vessels and extra-cellular spaces during postnatal maturation of rat cerebral cortex. J Comp Neurol 138: 31–48.

    Article  PubMed  CAS  Google Scholar 

  • Craigie E H (1924) Changes in vascularity in the brain stem and cerebellum of the albino rat between birth and maturity. J Comp Neurol 38: 27–48.

    Article  Google Scholar 

  • Craigie E H (1925) Postnatal changes in vascularity in the cerebral cortex of the male albino rat. J Comp Neurol 39: 301–324.

    Article  Google Scholar 

  • Crone C, Christensen 0 (1981) Electrical resistance of a capillary endothelium. J Gen physiol 77: 1349–1371.

    Google Scholar 

  • Cserr H F, Bundgaard M (1986) The neuronal microenvironment: A comparative view. In H F Cserr (ed) The Neuronal Microenvironment. Annals of the New York Academy of Sciences. 481: 1–7.

    Google Scholar 

  • Davson H (1976) The blood-brain barrier. J Physiol 255: 1–28.

    PubMed  CAS  Google Scholar 

  • Diamond J M, Wright E M (1969) Biological membranes: The physical basis of ion and nonelectrolyte selectivity. Annu Rev Physiol 31: 581–646.

    Article  PubMed  CAS  Google Scholar 

  • Donahue S (1964) A relationship between fine structure and function of blood vessels in the central nervous system of rabbit fetuses. Am J Anat 115: 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Donahue S, Pappas G D (1961) The fine structure of capillaries in the cerebral cortex of the rat at various stages of development. Am J Anat 108: 331–347.

    Article  PubMed  CAS  Google Scholar 

  • Dyson S E, Jones D G, Kendrick W L (1976) Some observations on the ultrastructures of developing rat cerebral capillaries. Cell Tissue Res 173: 529–542.

    Article  PubMed  CAS  Google Scholar 

  • Hannah R S, Nathaniel E J H (1974) The postnatal development of blood vessels in the substantia gelatinosa of rat cervical cord - an ultrastructural study. Anat Rec 178: 691–710.

    Article  PubMed  CAS  Google Scholar 

  • Hunziker O, Frey H, Schulz U (1974) Morphometric investigations of capillaries in the brain cortex of the cat. Brain Res 65: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Hunziker O, Schweizer A (1977) Postmortem changes in stereological parameters of cerebral capillaries. Beitr Path 161: 244–255.

    Article  CAS  Google Scholar 

  • Hunziker O, Abdel’Al S, Frey H, Veteau M-J, Meier-Ruge W (1978) Quantitative studies in the cerebral cortex of aging humans. J Geront 24: 27–31.

    Article  CAS  Google Scholar 

  • Hunziker O, Abdel’Al S, Schulz U, Schweizer A (1978) The architecture of cerebral capillaries in aged human subjects with hypertension. In: J Cervos-Navarro, E Betz, R Wullenweber (eds). Advances in Neurology, Vol. 20: Cerebrospinal Microcirculation, Raven Press, New York pp. 471–478.

    Google Scholar 

  • Hunziker O, Abdel’Al S, Schulz U (1979) The aging human cerebral cortex: A stereological characterization of changes in the capillary net. J Geront 34: 345–350.

    PubMed  CAS  Google Scholar 

  • Joo F (1968) Effect of inhibition of adenosine triphosphatase activity on the fine structural organization of the brain capillaries. Nature 219: 1378–1379.

    Article  PubMed  CAS  Google Scholar 

  • Lambertson C J (1980) Chemical control of respiration at rest. In: V B Mountcastle (ed) Medical Physiology, C V Mosby, St. Louis, 1774–1827.

    Google Scholar 

  • Lee J C (1971) Evolution in the concept of the blood-brain barrier phenomenon. Progress in Neuropathol 1: 84–145.

    CAS  Google Scholar 

  • Mancardi G L, Perdelli F, Rivano C, Leonarde A, Bugiani O (1980) Thickening of the basement membrane of cortical capillaries in Alzheimer’s disease. Acta Neuropath 49: 79–85.

    Article  PubMed  CAS  Google Scholar 

  • Meier-Ruge W, Hunziker O, Schulz U, Tobler H-J, Schweizer A 1980 ) Stereological changes in the capillary network and nerve cells of the aging human brain. Mechs Aging Dev 14: 233–243.

    Article  CAS  Google Scholar 

  • Milnor W R (1980) Capillaries and lymphatic vessels. In: V B Mountcastle (ed) Medical Physiology, C V Mosby, St. Louis, pp 1085–1093.

    Google Scholar 

  • Miquel J, Economos A C, Fleming J, Johnson J E, Jr. (1980) Mitochondrial role in cell aging. Expl Geront 15: 575–591.

    Article  CAS  Google Scholar 

  • Molgard K, Balslev Y, Lauritzen B, Norman R (1987) Cell junctions and membrane specializations in the ventricular zone (germinal matrix) of the developing sheep brain: a CSF-brain barrier. J Neurocytol 16: 433–444.

    Article  Google Scholar 

  • Mollgard K, Saunders N R (1986) The development of the human blood-brain and blood-CSF barriers. Neuropath Applied Neurobiol 12: 337358.

    Google Scholar 

  • Oldendorf W H, Cornford M E, Brown W J (1977) The large apparent work capability of the blood-brain barrier: A study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1: 409–417.

    Article  PubMed  CAS  Google Scholar 

  • Palade G E, Bruns R R (1964) Structure and function in normal muscle capillaries. In: M D Sipperstein, A R Colwell, K Meyers (eds) Small blood vessel involvement in diabetes mellitus. Baltimore, Garamound/Pridemark. pp 45–55.

    Google Scholar 

  • Pappenheimer J R (1953) Passage of molecules through capillary walls. Physiol Rev 33: 387–423.

    PubMed  CAS  Google Scholar 

  • Pardridge W M (1983) Brain metabolism: A perspective from the blood-brain barrier. Physiol Rev 63: 1481–1535.

    PubMed  CAS  Google Scholar 

  • Rapoport S I (1976) Blood-Brain Barrier in Physiology and Medicine, Raven Press, New York.

    Google Scholar 

  • Reese T S, Karnovsky M J (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34: 207–217.

    Article  PubMed  CAS  Google Scholar 

  • Richards J G (1978) Permeability of intercellular junctions in brain epithelia and endothelia to exogenous amine: Cytochemical localization of extracellular 5-hydroxydopamine. J Neurocytol 7: 61–70.

    Article  PubMed  CAS  Google Scholar 

  • Rowan R A, Maxwell S (1981a) Patterns of vascular sprouting in the postnatal development of the cerebral cortex of the rat. Am J Anat 160: 247–255.

    Article  PubMed  CAS  Google Scholar 

  • Rowan R A, Maxwell S (1981b) An ultrastructural study of vascular proliferation and vascular alkaline phosphatase activity in the developing cerebral cortex of the rat. Am J Anat 160: 257–265.

    Article  PubMed  CAS  Google Scholar 

  • Saunders N R, Mollgard K (1984) Development of the blood-brain barrier. J Dev Physiol 6: 45–57

    PubMed  CAS  Google Scholar 

  • Schmidley J W, Wissig S L (1986) Basement membrane of central nervous system capillaries lacks ruthenium red-staining sites. Microvasc Res 32: 300–314.

    Article  PubMed  CAS  Google Scholar 

  • Schulz U, Abdel’Al S, Hunziker O, Meier-Ruge W (1980) Quantitative morphological changes in capillaries and neurons in the aging human putamen. Microsc Acta 4: Suppl 4, 135–139.

    Google Scholar 

  • Schwink A, Wetzstein R (1966) Die Kapillaren in Subcommissural organ der Ratte. Z Zellforsch 73: 56–88.

    Article  PubMed  CAS  Google Scholar 

  • Singh D N P, Nathaniel E J H (1975) Postnatal development of blood vessels (capillaries) in the rat olfactory bulb: A light and ultrastructural study. Neurosci Lett 1: 203–208.

    Article  Google Scholar 

  • Stewart P A, Hayakawa (1987) Interendothelial junctional changes underlie the developmental ‘tightening’ of the blood-brain barrier. Devel Brain Res 32: 271–281.

    Google Scholar 

  • Stewart P A, Magliocco M, Hayakawa K, Farrell C L, Del Maestro C F, Girvin J, Kaufmann J C E, Vinters H V, Gilbert J (1987) A quantitative analysis of blood-brain barrier ultrastructure in the aging human. Microvasc Res 33: 270–282.

    Article  PubMed  CAS  Google Scholar 

  • Tilton R G, Hoffmann P L, Kilo C, Williamson J R (1981) Pericyte degenera-tion and basement membrane thickening in skeletal muscle capillaries of human diabetics. Diabetes 30: 326–334.

    PubMed  CAS  Google Scholar 

  • Vracko R, Thorning, Huang T W (1979) Basal lamina of alveolar epithelium and capillaries: Quantitative changes with aging and in diabetes mellitus. Am Rev Resp Dis 120: 973–983.

    PubMed  CAS  Google Scholar 

  • Vracko R, Pecoraro R E, Carter W B (1980) Overview article: Basal lamina of epidermis muscle fibers, muscle capillaries, and renal tubules: Changes with aging and in diabetes mellitus. Ultrastruct. Path. 1: 559–574.

    Article  CAS  Google Scholar 

  • Wolff J R, Bar T (1976) Development and adult variations of the pericapillary glial sheath in the cortex of rat. In: J Cervos-Navarro, E Betz, F Matakas, R WullenWeber (eds) The Cerebral Vessel Wall. Raven Press, New York, pp 7–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burns, E.M., Kruckeberg, T.W. (1989). The Ultrastructural Basis of Capillary Permeability. In: Battaini, F., Govoni, S., Magnoni, M.S., Trabucchi, M. (eds) Regulatory Mechanisms of Neuron to Vessel Communication in the Brain. NATO ASI Series, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74152-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74152-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74154-8

  • Online ISBN: 978-3-642-74152-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics