Experience with the Development of a Group-Contribution Equation of State for the Prediction of Physical Properties for Process Engineering Purposes

  • Heiner W. Landeck
  • Hans F. Kistenmacher
Conference paper

Summary

The PFGC group-contribution equation of state as an example of a promising method to solve industrial application problems for complex mixtures containing non-polar, polar, associating, sub- and supercritical components, has been used to demonstrate the following aspects of general interest:
  • The industrial requirements for improved physical properties prediction methods, and the range of molecular com, lexity of mixtures encountered in gas purification processes, are discussed.

  • A general strategy for the preselection of physical property prediction methods, and especially those for testing equations of state or group- contribution equations of state, has been developed. The industrial boundary conditions which determine success or failure are given.

  • A general multiproperty-multicomponent-multiphase strategy to be used for the fit of the parameters of equations of state or group-contribution equations is proposed.

For the PFGC group-contribution equation of state the investigations have the following specific results:
  • The PFGC method has many fundamental weaknesses.

  • The original PFGC method does not work for industrial applications with sufficient accuracy.

From an industrial point of view, a group-contribution equation of state is still required for all types of molecular interactions and all areas of applications.

Keywords

Entropy Enthalpy Petroleum Hydrocarbon Glycol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.a.
    Prausnitz J.M., R.N. Lichtenthaler, E.G. de Azevedo: “Molecular Thermodynamics of Fluid-Phase Equilibria”, Prentice-Hall, Englewood Cliffs, N.J. (1986)Google Scholar
  2. b.
    Walas S.M.: “Phase Equilibria in Chemical Engineering”, Butterworth, Boston (1985)Google Scholar
  3. c.
    Van Ness H.C., M.M. Abbott, “Classical Thermodynamics of Nonelelectrolyte Solutions”, McGraw-Hill Co.,New York (1982)Google Scholar
  4. 2.a.
    Reid R.C., Prausnitz J.M., B.E. Poling: “The Properties of Gases and Liquids”, McGraw-Hill Co., New York (1987)Google Scholar
  5. b.
    Danner R.P., T.E. Daubert. Daubert: “AIChE DIPPR Chemical Properties Prediction Manual”, AIChE, New York (1983), revised and extended version (1988)Google Scholar
  6. 3.
    Pierotti G.J., C.H. Deal, E.L. Derr: Ind. Eng. Chem. 51, 95 (1959)CrossRefGoogle Scholar
  7. 4.a.
    Derr E.L., C.H. Deal: Inst. Chem. E.g. Syrnp. Ser. London 3 (32), 40 (1969)Google Scholar
  8. b.
    Kojima K., K.Tochigi: “Prediction of Vaor-Liquid Equilibria by the ASOG Method”, Elsevier, Amsterdam (1979)Google Scholar
  9. 5.a.
    Fredenslund A., R.L. Jones, J.M. Prausnitz: AIChE J. 21, 1086 (1975)CrossRefGoogle Scholar
  10. b.
    Fredenslund A., J. Gmehling, P. Rasmussen: “Vapor-Liquid Equilibria using UNIFAC”, Elsevier, Amsterdam (1977)Google Scholar
  11. c.
    Gmehling J., P. Rasmussen, A. Fredenslund: Ind. Eng. Chem. Process Des. Dev. 21, 118 (1982)CrossRefGoogle Scholar
  12. d.
    Macedo E.A., U. Weidlich, J. Gmehling, P. Rasmussen: Ind. Eng. Chem. Process Des. Dev. 26, 676 (1983)CrossRefGoogle Scholar
  13. e.
    Tiegs D., P. Rasmussen, J. Gmehling, A. Fredenslund: Ind. Eng. Chem. Res. 26, 159 (1987)CrossRefGoogle Scholar
  14. f.
    Fredenslund A., P. Rasmussen: Fluid Phase Eqilibria 24, 115 (1985)CrossRefGoogle Scholar
  15. g.
    Larsen B.L.: PhD Thesis, Instituttet for Kemiteknik, Danmarks Tekniske Hojskole, Lyngby/DK (1986)Google Scholar
  16. 6.a.
    Cunningham J.R.: MSc. Thesis, Bringham Young University, Provo, UT (1974)Google Scholar
  17. b.
    Cunningham J.R., G.M. Wilson: Paper presented at GPA Meeting, Denver/CO (1974)Google Scholar
  18. 7.a.
    Moshfeghian A., A. Shariat, J.H. Erbar: Paper presented at AIChE Natl. Meet., Houston/TX (1979)Google Scholar
  19. b.
    Moshfeghian A., A. Shariat, J.H. Erbar: ACS Symposium Series 133, 333 (1980)CrossRefGoogle Scholar
  20. 8.
    a. Majeed A.I.: PhD Thesis, Oclahoma State University, Stillwater/OK (1983)Google Scholar
  21. b.
    Majeed A.I., J. Wagner: ACS Symposium Series 300, 452 (1986)CrossRefGoogle Scholar
  22. c.
    Wagner J., R.C. Erbar, A.I. Majeed: Proceedings of the 62th Annual GPA Convention, San Francisco/CA, March 14 - 16, 65 (1983)Google Scholar
  23. 9.
    King C.J.: “Separation Processes”, McGraw-Hill Co., New York (1980)Google Scholar
  24. 10.
    Kohl A.L., F.C. Riesenfeld: “Gas Purification”, Gulf Publishing Co. Houston/TX (1985)Google Scholar
  25. 11.
    Maddox R.N.: “Gas Conditioning and Processing”, Vol. IV, Campbell Petroleum Series, Norman/OK (1982)Google Scholar
  26. 12.
    Donohue M.D., J.M. Prausnitz: AIChE J. 24, 848 (1978)CrossRefGoogle Scholar
  27. 13.
    Streich M., H. Kistenmacher: Hydrocarbon Processing, 237, May 1979Google Scholar
  28. 14.a.
    a. Prausnitz J.M., F.H. Shair: AIChE J 7, 682 (1961)CrossRefGoogle Scholar
  29. b.
    Chao K.C., G.D. Seader: AIChE J. 7, 598 (1961)CrossRefGoogle Scholar
  30. 15.
    Prausnitz J.M.: EFCE Publication Series No. 11, 231 (1980)Google Scholar
  31. 16.a
    Mathias P.M., J.P. O’Connell: Advances in Chemistry Series 182, 97 (1979)Google Scholar
  32. b.
    O’Connell J.P.: EFCE Publication Series No. 11, 445 (1980)Google Scholar
  33. c.
    Mathias P.M., J.P. O’Connell: Chem. Eng. Sci. 36, 1123 (1981)CrossRefGoogle Scholar
  34. 17.a.
    Soave G.: Chem. Eng. Sci. 27, 1197 (1972)CrossRefGoogle Scholar
  35. b.
    Graboski M.S., T. E. Daubert: Ind. Eng. Chem. Process Des. Dev. 17, 443 and 448 (1978)CrossRefGoogle Scholar
  36. 18.a.
    Peng D.-Y., D.B. Robinson: Ind. Eng. Chem. Fundam. 15, 59 (1976)CrossRefGoogle Scholar
  37. b.
    Peng D.-Y., D.B. Robinson: AIChE J. 23, 137 (1977)CrossRefGoogle Scholar
  38. 19.
    Schmidt G., H. Wenzel: Chem. Eng. Sci. 35, 1503 (1980)CrossRefGoogle Scholar
  39. 20.
    Wilson G.M.: J.Am.Chem.Soc. 86, 127 (1984)CrossRefGoogle Scholar
  40. 21.
    Goodwin R.D.: J.Phys.Chem.Ref.Data 16, 799 (1987)Google Scholar
  41. 22.a.
    Abbott M.M., H.C. Van Ness: AIChE J. 21, 62 (1975)CrossRefGoogle Scholar
  42. b.
    Anderson T.F., D.S.Abrams, E.A. Grens, Prausnitz J.M.: Paper presented at 69th Annual AIEchE Meeting, Chicago/IL (1976)Google Scholar
  43. c.
    Anderson T.F., D.S. Abrams, E.A. Grens II: AIChE J. 24, 20 (1978)CrossRefGoogle Scholar
  44. d.
    Kemeny S., J. Manczinger, S. Skjold-Jorgensen, K. Toth: AIChE J. 28, 20 (1978)CrossRefGoogle Scholar
  45. e.
    Skjold-Jorgensen S.: Fluid Phase Equilibria 14, 273 (1983)CrossRefGoogle Scholar
  46. 23.a.
    Skjold-Jorgensen S.: Fluid Phase Equilibria 16, 317 (1984)CrossRefGoogle Scholar
  47. b.
    Skjold-Jorgensen S.: Ind. Eng. Chem. Res. 27, 110 (1988)CrossRefGoogle Scholar
  48. 24.
    Schwartzentruber J., L. Ponce-Ramirez, H. Renon: Ind. Eng. Chem. Process Des. Dev 25, 804 (1986)CrossRefGoogle Scholar
  49. 25.a.
    Gupte P.A., P. Pasmussen, A. Fredenslund: Fluid Phase Equilibria 29, 485 (1986)CrossRefGoogle Scholar
  50. b.
    P.A., P. Pasmussen, A. Fredenslund: Ind. Eng. Chem. Fundam. 25, 636 (1986)CrossRefGoogle Scholar
  51. 26.
    Gani R., N. Tzouvaras, P. Pasmussen, A. Fredenslund: SEP-8810, Instituttet for Kemiteknik, Danmarks Tekniske Hojskole, Lyngby/DK (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Heiner W. Landeck
    • 1
  • Hans F. Kistenmacher
    • 1
  1. 1.Division TVT MunichLINDE AGHoellriegelskreuthFederal Republic of Germany

Personalised recommendations