Statistical Thermodynamics: Current Perspectives and Limitations of Fluid Property Estimation

  • K. Lucas
Conference paper


Statistical thermodynamics provides a simple formal connection between the thermodynamics of a system, as represented by its free energy A, and the molecular properties of a system, as represented by its canonical partition function Q [1]:
$${{\rm{A}}^{{\rm{(T,V,\{ }}{{\rm{N}}_{\rm{j}}}{\rm{\} )}}}}\,{\rm{ = }}\,{\rm{ - }}\,{\rm{kT}}\,{\rm{ln}}\,{\rm{Q(T,V,\{ }}{{\rm{N}}_{\rm{j}}}{\rm{\} ),}}$$
where k is Boltzmann’s constant, T is the thermodynamic temperature, V the volume, {Nj} the total amount of molecule numbers of the various components, and
$${\rm{Q}}\,{\rm{ = }}\,\mathop {\rm{\Sigma }}\limits_{\rm{i}} \,{\rm{e}}{\,^{{\rm{ - E}}{}_{\rm{i}}{\rm{/kT,}}}}$$
Here Ei, the molecular energy of the system in its quantum state i, is the key quantity.


Internal Rotation Intermolecular Force Virial Coefficient Canonical Partition Function Rigid Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Lucas: Applied Statistical Thermodynamics (in German) Springer 1986Google Scholar
  2. [2]
    Shimanouchi, T.; Matsuura, H.; Ogawa, Y.; Harada, F.: J. Phys. Chem. Ref. Data 9 (1980) 1149CrossRefGoogle Scholar
  3. [3]
    Hehre, W.J.; Radom, L.; Schleyer, P.V.R.; Pople, J.A.: Ab Inition Molecular Orbital Theory. John Wiley & Sons, New York 1986Google Scholar
  4. [4]
    Ameling, W.; Ripke, M.; Lucas, K.: Int. J. Thermophysics, to be publishedGoogle Scholar
  5. [5]
    Luckas, M.; Lucas, K.: Fluid Phase Equilibria, submittedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • K. Lucas
    • 1
  1. 1.GHS DuisburgDuisburgFederal Republic of Germany

Personalised recommendations