Renormalization of Extended Electroweak Models from the Heterotic String and Z′ Production

  • J. Moreno
  • M. Quirós
Conference paper


String theories use to predict a much higher than four rank gauge group. In particular four-dimensional strings in the fermionic formulation [l] currently generate rank-22 gauge groups while orbifold compactifications [2] of the E 8 × E 8 heterotic string and some four-dimensional string constructions in the bosonic formulation [3] can encompass gauge groups of rank as low as 8. Finally, Calabi-Yau compactifications of the E 8 × E 8 string with spin connection embedded into the gauge group [4], and possibly blown-up (2,2) orbifolds [5], lead to E 6, or any rank-6 or 5 subgroup thereof, as the gauge group at the compactification scale. Therefore some extra U(1) at low energy is not unexpected from string theories. On the other hand, the signature of an extra Z′ [6] in present and future hadron colliders is probably the cleanest one as far as new physics is concerned.


Gauge Group Heterotic String Mirror Generation Future Collider Standard Model Singlet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Kawai, D.C. Lewellen and S.-H. Tye, Nucl. Phys. B288, 1 (1987)MathSciNetADSCrossRefGoogle Scholar
  2. I. Antoniadis, C.P.Bachas and C. Kounnas, Nucl. Phys. B289, 87 (1987).MathSciNetADSCrossRefGoogle Scholar
  3. [2]
    L. Dixon, J.A. Harvey, C. Vafa and E. Witten, Nucl. Phys. B261, 678 (1985); B274, 286 (1986)MathSciNetADSCrossRefGoogle Scholar
  4. L.E. Ibaiiez, J.E. Kim, H.P. Nilles and F. Quevedo, Phys. Lett. B191, 282 (1987)ADSGoogle Scholar
  5. A.H. Chamseddine, J.-P. Derendinger and M. Quiros, CERN-TH.5035 (1988), to appear in Nucl. Phys. B; A.H. Chamseddine and M. Quirós, CERN-TH.5100 (1988)Google Scholar
  6. [4]
    P. Candelas, G. Horowitz, A. Strominger and E. Witten, Nucl. Phys. B258, 46 (1985)MathSciNetADSCrossRefGoogle Scholar
  7. M. Cvetic and L. Dixon, SLAC-preprint PUB-4113 (1987)Google Scholar
  8. [6]
    F. del Aguila, M. Quirós and F. Zwirner, Nucl. Phys. B287, 419 (1987)ADSCrossRefGoogle Scholar
  9. [7]
    M. Dine, V. Kaplunovski, M. Mangano, C. Nappi and N. Seiberg, Nucl. Phys. B259, 549 (1985)ADSCrossRefGoogle Scholar
  10. [8]
    F. del Aguila, G.D. Coughlan and M. Quirós, Nucl. Phys. B307, 633 (1988)ADSCrossRefGoogle Scholar
  11. [9]
    F. del Aguila, J.A. Gonzalez and M. Quirós, Phys. Lett. B197, 89 (1987); EB200, 587 (1988)ADSCrossRefGoogle Scholar
  12. [10]
    F. dels Aguila, J.A. González and M. Quirós, Nucl. Phys. B307, 571 (1988)ADSCrossRefGoogle Scholar
  13. F. del Aguila, J. Moreno and M. Quirós, preprint UAB-FT-197/88Google Scholar
  14. UA1 Collab., preprint CERN-EP/87-163 (1987)Google Scholar
  15. UA2 Collab., R. Ansari et al., Phys. Lett. B195, 613 (1987)Google Scholar
  16. [13]
    J. Ellis, P.J. Franzini and F. Zwirner, Phys. Lett. B202, 417 (1988)ADSCrossRefGoogle Scholar
  17. See: T. Devlin, A Search for Supersymmetric Particles in Events, These ProceedingsGoogle Scholar
  18. See: T. Kamae, Results from e+e Collisions, These Proceedings.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. Moreno
    • 1
  • M. Quirós
    • 1
  1. 1.Instituto de Estructura de la MateriaMadridSpain

Personalised recommendations