Advertisement

Pattern Formation on Analogue Parallel Networks

  • H.-G. Purwins
  • Ch. Radehaus
Part of the Springer Series in Synergetics book series (SSSYN, volume 42)

Abstract

In this contribution we give a review of some properties of real electrical analogue parallel networks consisting of simple electronic oscillators coupled linearely. The networks are the discretized versions of two-component reaction diffusion systems. Physical insight into the behaviour of the systems is obtained by interpreting one component as an activator and the other as an inhibitor. Interpreting the electrical circuit as an equivalent circuit for a continuous material we can apply the model also to gas discharge systems, semiconductor devices and other systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    R. Schmeling: Diplomarbeit, University of Münster (1988)Google Scholar
  2. 2.
    T. Dirksmeyer, R. Schmeling, J. Berkemeier and H.-G. Purwins: to be publishedGoogle Scholar
  3. 3.
    J. Smoller: Shock Waves and Reaction-Diffusion Equations ( Springer, New York 1983 )MATHCrossRefGoogle Scholar
  4. 4.
    G. Nicolis and I. Prigogine: 15elf-Organization in Noneauilibrium Systems ( Wiley, New York 1977 )Google Scholar
  5. 5.
    P. Glansdorff, I. Prigogine: Thermodynamic Theory of Structure. Stability and Fluctuations ( Wiley, New York 1971 )MATHGoogle Scholar
  6. 6.
    H. Haken: Synergetik 2. Aufl. (Springer, Berlin 1983 )CrossRefGoogle Scholar
  7. 7.
    H. Haken: Advanced Synergetics ( Springer, Berlin 1983 )MATHGoogle Scholar
  8. 8.
    R. Field, M. Burger (eds.): Oscillations and Traveling Waves in Chemical Systems ( Wiley, New York 1985 )Google Scholar
  9. 9.
    P. Fife: Mathematical Aspects of Reaction and Diffusion Systems, Springer Lecture Notes in Biomath., 28 (1979)Google Scholar
  10. 10.
    J. Murray: Lectures on Nonlinear Differential Equation Models in Biology (Clarendon Press, Oxford 1977 )Google Scholar
  11. 11.
    A. Gierer: Prog. Biophys. Molec. Biol., 31, 1 (1981)MathSciNetCrossRefGoogle Scholar
  12. 12.
    H. Meinhardt: Models of Biological Pattern Formation ( Academic Press, London 1982 )Google Scholar
  13. 13.
    K. Maginu: Math. Biology 7, 375 (1979)CrossRefGoogle Scholar
  14. 14.
    F. Rothe: J. Math. Biology 7, 375 (1979)MathSciNetCrossRefGoogle Scholar
  15. 15.
    F. Rothe: Nonlinear Analysis, Theory, Methods and Applications 5, 487 (1981)Google Scholar
  16. 16.
    R. Fitz-Hugh: Biophysical J. 1, 445 (1961)ADSCrossRefGoogle Scholar
  17. 17.
    J. Nagumo, S. Arimoto, S. Yoshizawa: Proc. IRI 2061 (1962)Google Scholar
  18. 18.
    J. Berkemeier, T. Dirksmeyer, G. Klempt, H.-G. Purwins: Z. Phys. B. - Condensed Matter 65, 2500000 (1986)Google Scholar
  19. 19.
    H.-G. Purwins, G. Klempt, J. Berkemeier: Festkörperprobleme - Advances in Solid State Physics 27, 27 (1987)Google Scholar
  20. 20.
    H.-G. Purwins, C. Radehaus, J. Berkemeier: Z. Naturforsch. 43a, 17 (1988)Google Scholar
  21. 21.
    T. Dirksmeyer, M. Bode, H.-G. Purwins: to be publishedGoogle Scholar
  22. 22.
    C. Radehaus, K. Kardell, H. Baumann, D. Jäger, H.-G. Purwins: Z. Phys. B - Condensed Matter, 65, 515 (1987)Google Scholar
  23. 23.
    H. Baumann, R Symanczyk, C. Radehaus, H.-G. Purwins, D. Jäger: Phys. Lett. A 123, 421 (1987)Google Scholar
  24. 24.
    C. Radehaus, T. Dirksmeyer, H. Willebrand, H.-G. Purwins: Phys. Lett. A 125, 92 (1987)Google Scholar
  25. 25.
    K. Kardell, C. Radehaus, R. Dohmen, H.-G. Purwins, submitted for publication in Journal of Appl. Phys.Google Scholar
  26. 26.
    A. M. Turing: Phil. Trans. Roy. Soc. B 237,37 (1952)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • H.-G. Purwins
    • 1
  • Ch. Radehaus
    • 1
  1. 1.Institute for Applied PhysicsUniversity of MünsterMünsterFed. Rep. Germany

Personalised recommendations