Skip to main content

Safety Aspects of Endosonography

  • Chapter
  • 62 Accesses

Abstract

In any type of sonographic examination, including endosonography, ultrasound waves are subject to certain physical laws. As the waves pass through the human body, interaction of the sound field with the tissues can produce various biologic effects (bioeffects), not all of which are harmful. The tissue responses to ultrasound are based upon thermal effects as well as other phenomena, most notably acoustic cavitation. The relevant quantity in terms of bioeffects is the ultrasound energy, which is measured in W/cm2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdulla U, Campbell S, Dewhurst CJ, Thalbot D, Lucas M, Mullorky M (1971) Effect of diagnostic ultrasound on maternal and fetal chromosomes. Lancet II: 829–831

    Article  Google Scholar 

  • American Institute of Ultrasound in Medicine (1984) Statement on clinical safety S 3. In: Safety considerations for diagnostic ultrasound. AIUM, Bethesda (also AIUM Lett October 1988)

    Google Scholar 

  • Apfel RE (1986) Possibility of microcavitation from diagnostic ultrasound. IEEE Trans Ultrasound Ferroelectrics Frequency Control 33: 139–142

    Article  Google Scholar 

  • Baketeig LS, Eik-Nes S, Jacobson S (1985) A randomized controlled trial of ultrasonographic screening in pregnancy. Lancet II: 207–210

    Google Scholar 

  • Barnett SB, Banin A, Mitchell G (1982) An investigation of mutagenic potentials of pulsed ultrasound. Br J Radiol 55: 501–504

    Article  PubMed  CAS  Google Scholar 

  • Boyd E, Abdulla U, Donald J, Fleming IEE, Hall AJ, Ferguson MA (1971) Chromosome breakage and ultrasound. Br Med J 2: 501–502

    Article  PubMed  CAS  Google Scholar 

  • British Institute of Radiology (1987) The safety of diagnostic ultrasound. Br J Radiol [Suppl] 20

    Google Scholar 

  • British Medical Ultrasound Society (1984) Safety of diagnostic ultrasound. Press release, London

    Google Scholar 

  • Brulfert A, Ciavarino V, Miller MW, Manlik D, Carstensen E (1984) Diagnostic insonation of extra utero human placentas: no effect on lymphocyte sister chromatid exchange. Hum Genet 66: 289–291

    Article  PubMed  CAS  Google Scholar 

  • Carsons PL (1988) Medical ultrasound fields and exposure measurements. In: Proceedings of 22nd Annual Meeting of National Council on Radiation Protection and Measurements. NCRP, Bethesda MD

    Google Scholar 

  • Carstens EL, Gates AH (1984) The effects of pulsed ultrasound on the fetus. J Ultrasound Med Biol 3:145–147

    Google Scholar 

  • Cartwright RA, McKinney PA, Hopton PA (1984) Ultrasound examination in pregnancy and childhood cancer. Lancet II: 999–1000

    Article  Google Scholar 

  • Child SZ, Carstens EL, Smacho K (1981) Effects of ultrasound on drosophila. Ill: Exposure of larvae to low temporal average intensity pulsed irradiation. Ultrasound Med Biol 7: 167–173

    Article  PubMed  CAS  Google Scholar 

  • Coakley WT, Slade JS, Braeman JM, Moore JL (1972) Examination of lymphocytes for chromosome aberrations after ultrasonic irradiation. Br J Radiol 45: 328–332

    Article  PubMed  CAS  Google Scholar 

  • Edwards MJ (1969) Congenital defects in guinea pigs: fetal resorptions, abortions and malformations following hyperthermia during gestation. Teratology 2: 323–328

    Google Scholar 

  • Environmental Health Directorate (1981) Safety Code 23: Guidelines for the safe use of ultrasound. Part I: Medical and paramedical application. Ottawa Environmental Health Department, Health Protection Branch, report 8

    Google Scholar 

  • European Federation of Sections of Ultrasound in Medicine and Biology (1988) Sicherheits-Statement der Watchdog- group Ultraschall Med 9: 52–53

    Google Scholar 

  • Fisher P, Golob E, Kratochwil A, Kunze-Mühl E (1967) Chromosomenuntersuchungen nach Ultraschalleinwirkung. Wien Klin Wochenschr 79: 436–437

    Google Scholar 

  • Flynn HG (1952) Generation of transient cavities in liquids by microsecond pulses of ultrasound. J Acoust Soc Am 72: 1926–1932

    Article  Google Scholar 

  • Gebart E (1981) Sister chromatid exchange (SCE) and structural chromosome aberration in mutagenicity. Hum Genet 58: 235–254

    Article  Google Scholar 

  • Goss A (1984) Sister chromatid exchange and ultrasound. Report of the Bioeffects Committee of the AIUM. J Ultrasound Med Biol 3: 463–470

    CAS  Google Scholar 

  • Hara K (1980) Effects of ultrasonic irradiation radiation on chromosomes, cell division and developing embryo. Acta Obstet Gynecol Jpn 32: 61–68

    CAS  Google Scholar 

  • Haupt M, Martin AO, Simpson JL, Iqbal MA, Elias S, Dyer A, Sabbagha RE (1981) Ultrasonic induction of sister chromatid exchange in human lymphocytes. Hum Genet 59: 221–226

    Article  PubMed  CAS  Google Scholar 

  • Hellmann LM, Duffus GM, Donald I, Sunden B (1970) Safety of diagnostic ultrasound in obstetrics. Lancet I: 1133–1135

    Article  Google Scholar 

  • Hill CR, ter Haar GR (1982) Nonionizing radiation protection. WHO Europe, Copenhagen, pp 199–228

    Google Scholar 

  • Jacobsen-Kram D (1984) The effects of diagnostic ultrasound on sister chromatid exchange frequencies: a review of the recent literature. J Clin Ultrasound 12: 5–10

    Article  Google Scholar 

  • Kamoscay Gy (1958) Ultrasound in gynecology. Am J Phys Med 37: 196

    Google Scholar 

  • Kinnier Wilson LM, Waterhouse JA (1984) Obstetric ultrasound and childhood malignancies. Lancet II: 997–999

    Article  Google Scholar 

  • Lele PP (1979) Safety and potential hazards in the current applications of ultrasound in obstetrics and gynecology. J Ultrasound Med Biol 5: 307–320

    Article  CAS  Google Scholar 

  • Liebeskind D, Bases R, Elequin F, Königsberg M (1979) Sister chromatid exchange in human lymphocytes after exposure to diagnostic ultrasound. Science 205: 1273–1275

    Article  PubMed  CAS  Google Scholar 

  • Lizzi F (1988) Bioeffect considerations for the safety of diagnostic ultrasound. J Ultrasound Med Biol 14: 1–38

    Google Scholar 

  • Lucas M, Mullorky M, Abdulla U (1972) Study of chromosomes in the newborn after ultrasonic fetal heart monitoring. Br Med J 3: 795–796

    Article  PubMed  CAS  Google Scholar 

  • Lyons EA (1981) First symposium on safety and standardisation of ultrasound in medicine. Proceedings, World Federation of Ultrasound in Medicine, Sydney

    Google Scholar 

  • Lyons EA, Coggrave M, Brown RE (1980) Follow up study in children exposed to ultrasound in utero: analysis of height and weight in the first six years of life. Proceedings of 25th Annual Meeting of AIUM, New Orleans, p 49

    Google Scholar 

  • Macintosh JC, Davey DA (1970) Chromosome aberrations induced by an ultrasonic fetal pulse detector. Br Med J 4: 92–93

    Article  PubMed  CAS  Google Scholar 

  • Macintosh JC, Brown RC, Coakley WT (1975) Ultrasound and “in vitro” chromosome abberations. Brit J Radiol 4: 230–232

    Article  Google Scholar 

  • Matauschek J (1961) Einführung in die Ultraschalltechnik, 2nd edn. Verlag Technik, Berlin

    Google Scholar 

  • Miller DL (1977) The effects of ultrasonic cavitation of gas bodies in Elodea leaves during continuous and pulsed irradiation at 1 MHz. J Ultrasound Med Biol 3: 221–240

    Article  CAS  Google Scholar 

  • Moore RM, Barrick MK, Hamilton PM (1982) Ultrasound exposure during gestation and birthweight. J Ultrasound Med Biol 8: 34

    Google Scholar 

  • Mukubo M, Okai T, Kozuma S (1985) Safety of diagnostic ultrasound during pregnancy on fetus and child development. Proceed 85 WFUMB Sidney, p 481

    Google Scholar 

  • National Institutes of Health (1984) NIH Consensus Statement on diagnostic ultrasound in pregnancy. US Department of Health and Human Services, Bethesda

    Google Scholar 

  • Nyborg WL, Steel RB (1983) Temperature elevation in a beam of ultrasound. J Ultrasound Med Biol 9: 611–620

    Article  CAS  Google Scholar 

  • O’Brien WD Jr (1983) Ultrasonic dose dependent effect of ultrasound on fetal weight in mice. J Ultrasound Med Biol 2: 1–8

    Google Scholar 

  • Rott HD (1981) Zur Frage der Schädigungsmöglichkeit durch diagnostischen Ultraschall. Ultraschall 9: 56–64

    Article  Google Scholar 

  • Rott HD (1988) Diagnostischer Ultraschall: biologische Wirkungen, potentielle Risiken. Ultraschall 2–4

    Google Scholar 

  • Rott HD, Soldner R (1973) The effect of ultrasound on human chromosomes. Humangenetik 20:100–112

    Article  Google Scholar 

  • Royal College of obstetricians and Gynaecologists (1984) Report of the RCOG working party on routine ultrasound examination in pregnancy. Chameleon Press, London

    Google Scholar 

  • Scheidt PD, Stanley F, Bryla DA (1978) One year follow up of infants exposed to ultrasound in utero. Am J Obstet Gynecol 121:742–748

    Google Scholar 

  • Sikov MR, Collins DH, Carr DR (1984) Measurement of temperature rise in prenatal rats during exposure of the exteriorized uterus to ultrasound. I EE Transonics Ultrasonics Suppl 31:497–503

    Google Scholar 

  • Sikov MR (1986 a) Effects of ultrasound on development. Part I: introduction and studies in inframammalian species. J Ultrasound Med Biol 5: 577–583

    CAS  Google Scholar 

  • Sikov MR (1986 b) Effects of ultrasound on development. Part II: studies in mammalian species: on overview. J Ultrasound Med Biol 5: 651–661

    CAS  Google Scholar 

  • Soothill PW, Nicolades KH, Rodeck CH, Campbell S (1987) Amniotic fluid and fetal tissues are not heated by obstetric ultrasound scanning. Br J Obstet Gynaecol 94: 675–677

    Article  PubMed  CAS  Google Scholar 

  • Stark CR, Orleans M, Haverkamp AD, Murphy J (1984) Short- and long-term risks after exposure to diagnostic ultrasound. Obstet Gynecol 63:194–200

    PubMed  CAS  Google Scholar 

  • ter Haar G, Williams AR (1981) Biophysical and physiological consequences of ultrasonic irradiation of tissue. In: Kurjak A, Kratochwil A (eds) Recent advances in ultrasonic diagnosis. Excerpta medica, Amsterdam pp 33–36

    Google Scholar 

  • Wladimiroff JW, Laar J (1980) Ultrasound measurement of fetal body size: a randomized controlled trial. Acta Obstet Gynecol Scand 59:177–179

    Article  PubMed  CAS  Google Scholar 

  • Ziskin MC (1972) Survey of patient exposure to diagnostic ultrasound. In: Reid JM, Sikov MR (eds) Interaction of ultrasound and biological tissues. Department of Health, Education and Welfare (FDA) Publication 78–8008, Government Printing Office, Washington DC, p 203

    Google Scholar 

  • Ziskin MC (1987) The prudent use of diagnostic ultrasound. J Ultrasound Med Biol 9: 415–416

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bernaschek, G., Deutinger, J., Kratochwil, A. (1990). Safety Aspects of Endosonography. In: Endosonography in Obstetrics and Gynecology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74111-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74111-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74113-5

  • Online ISBN: 978-3-642-74111-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics