Skip to main content
Book cover

Insulin pp 41–64Cite as

Mutant Human Insulins and Insulin Structure-Function Relationships

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 92))

Abstract

Studies based on heritable defects in human function (sometimes called inborn errors of metabolism) have long played an important role to increase our understanding of mammalian biology in areas as diverse as biochemistry, cell and organismal physiology, and clinical medicine. In fact, studies over very many years of the hemoglobinopathies have formed a paradigm for the analysis of changes in molecular structure which both arise from genetic mutation and lead to important physiological consequences. Early work in the general area emphasized, for technical reasons alone, the results of mutations leading to: (a) structural change in the most abundant blood proteins; and (b) the replacement of amino acid residues that would change the properties of those proteins with respect to charge and electrophoretic mobility. Exceptions (including those involving important intracellular enzymes) are easily identified, but analysis of human tissues for genetic changes that result in concomitantly changed protein structure remained difficult for an extended period. Recent technical and methodological advances (including high performance liquid chromatography, instrumentation for ultramicro protein analysis, and the vast approaches of recombinant DNA analysis), however, have instilled renewed ability and interest to the field. The benefits that afford the study of genetic mutation in humans and of corresponding abnormal proteins are clear. They include determination of the genetic causes and implications of human disease and the importance of detailed protein structure in the attainment of correct protein, cellular, and organismal function. In many ways the analysis of human gene mutations helps to identify genes, proteins, and protein domains of special importance to normal and abnormal mammalian physiology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Assoian RK, Thomas NE, Kaiser ET, Tager HS (1982) [LeuB25]insulin and [AlaB24]insulin: altered structures and cellular processing of B24-substituted insulin analogs. Proc Natl Acad Sci USA 79:5147–5151

    Article  PubMed  CAS  Google Scholar 

  • Bell GI, Pictet RL, Rutter WJ, Cordell B, Tischer E, Goodman HM (1980) Sequence of the human insulin gene. Nature 284:26–32

    Article  PubMed  CAS  Google Scholar 

  • Blundell T, Dodson G, Hodgkin D, Mercola D (1972) Insulin: the structure in the crystal and its reflection in chemistry and biology. Adv Protein Chem 26:279–402

    Article  CAS  Google Scholar 

  • Carroll RJ, Hammer RE, Chan SJ, Swift HH, Rubenstein AH, Steiner DF (1988) A mutant human proinsulin is secreted from islets of langerhans in increased amounts via an unregulated pathway. Proc Natl Acad Sci USA 85:8943–8947

    Article  PubMed  CAS  Google Scholar 

  • Chan SJ, Keim P, Steiner DF (1976) Cell-free synthesis of rat preproinsulins: characterization and partial amino acid sequence determination. Proc Natl Acad Sci USA 73:1964–1968

    Article  PubMed  CAS  Google Scholar 

  • Chan SJ, Seino SU, Gruppuso PA, Schwartz R, Steiner DF (1987) A mutation in the B chain coding region is associated with impaired proinsulin conversion in a family with hyperproinsulinemia. Proc Natl Acad Sci USA 84:2194–2197

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Lesk AM, Dodson G, Hodgkin DC (1983) Transmission of conformational change in insulin. Nature 302:500–505

    Article  PubMed  CAS  Google Scholar 

  • Cosmatos A, Cheng K, Okada Y, Katsoyannis PG (1978) The chemical synthesis and biological evaluation of [1-L-alanine-A]-and [l-D-alanine-A]insulins. J Biol Chem 253:6586–6590

    PubMed  CAS  Google Scholar 

  • DeMeyts P, van Obberghen E, Roth J, Wollmer A, Brandenburg D (1978) Mapping of the residues responsible for the negative cooperativity of the receptor-binding region of insulin. Nature 273:504–509

    Article  PubMed  Google Scholar 

  • Dodson EJ, Dodson GG, Hodgkin DC, Reynolds CD (1979) Structural relationships in the two-zinc insulin hexamer. Can J Biochem 57:469–479

    Article  PubMed  CAS  Google Scholar 

  • Dodson EJ, Dodson GG, Hubbard RE, Reynolds CD (1983) Insulin’s structural behavior and its relationship to activity. Biopolymers 22:281–291

    Article  PubMed  CAS  Google Scholar 

  • Elliott RB, O’Brien D, Roy CC (1966) An abnormal insulin in juvenile diabetes mellitus. Diabetes 14:780–787

    Google Scholar 

  • Gabbay KH, DeLuca K, Fisher NJ Jr, Mako ME, Rubenstein AH (1976) Familial hyperproinsulinemia: an autosomal dominant defect. N Engl J Med 249:911–915

    Article  Google Scholar 

  • Gabbay KH, Bergenstal RM, Wolff J, Mako ME, Rubenstein AH (1979) Familial hyper-proinsulinemia: partial characterization of circulating proinsulin-like material. Proc Natl Acad Sci USA 76:2882–2885

    Article  Google Scholar 

  • Gammeltoft S (1984) Insulin structure and function. Physiol Rev 64:1321–1378

    PubMed  CAS  Google Scholar 

  • Given BD, Mako ME, Tager HS, Baldwin D, Markese J, Rubenstein AH, Olefsky J et al. (1980) Diabetes due to secretion of an abnormal insulin. N Engl J Med 302:129–135

    Article  PubMed  CAS  Google Scholar 

  • Given BD, Cohen RM, Shoelson SE, Frank BH, Rubenstein AH, Tager HS (1985) Biochemical and clinical implications of proinsulin conversion intermediates. J Clin Invest 76:1398–1405

    Article  PubMed  CAS  Google Scholar 

  • Gruppuso PA, Gorden P, Kahn RC, Cornblath M, Zeller WP, Schwartz R (1984) Familial hyperproinsulinemia due to a proposed defect in conversion of proinsulin to insulin. N Engl J Med 311:629–634

    Article  PubMed  CAS  Google Scholar 

  • Haneda M, Chan SJ, Kwok SCM, Rubenstein AH, Steiner DF (1983) Studies on mutant insulin genes: identification and sequence analysis of a gene encoding [SerB24]insulin. Proc Natl Acad Sci USA 80:6366–6370

    Article  PubMed  CAS  Google Scholar 

  • Haneda M, Polonsky KS, Bergenstal RM, Jaspan JB, Shoelson SE, Blix PM, Chan SJ et al. (1984) Familial hyperinsulinemia due to a structurally abnormal insulin: definition of an emerging new clinical syndrome. N Engl J Med 310:1288–1294

    Article  PubMed  CAS  Google Scholar 

  • Haneda M, Kobayashi M, Maegawa H, Watanabe N, Takata Y, Ishibashi O, Shigeta Y, Inouye K (1985) Decreased biological activity and degradation of human [SerB24]insulin, a second mutant insulin. Diabetes 34:568–573

    Article  PubMed  CAS  Google Scholar 

  • Inouye K, Watanabe K, Morihara K, Tochino Y, Kanaya T, Emura J, Sakakibara S (1979) Enzyme-assisted semisynthesis of human insulin. J Am Chem Soc 101:751–752

    Article  CAS  Google Scholar 

  • Inouye K, Watanabe K, Tochino Y, Kobayashi M, Shigeta Y (1981) Semosynthesis and properties of some insulin analogs. Biopolymers 20:1845–1858

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto Y, Sakura H, Yui R, Fujita T, Sakamoto Y, Matsuda A, Kuzuya T (1986a) Identification and characterization of a mutant insulin isolated from the pancreas of a patient with abnormal insulinemia. Diabetes [Suppl 1] 35:77 A

    Article  Google Scholar 

  • Iwamoto Y, Sakura H, Ishii Y, Yamamoto R, Kumakura S, Sakamoto Y, Masuda A, Kuzuya T (1986b) Radioreceptor assay for serum insulin as a useful method for detection of abnormal insulin with a description of a new family of abnormal insulinemia. Diabetes 35:1237–1242

    Article  PubMed  CAS  Google Scholar 

  • Kimmel JR, Pollack HG (1967) Studies of human insulin from nondiabetic and diabetic pancreas. Diabetes 16:687–694

    PubMed  CAS  Google Scholar 

  • Kitagawa K, Ogawa H, Burke GT, Chanley JD, Katsoyanis PG (1984a) Critical role of the A2 amino acid residue in the biological activity of insulin. Biochemistry 23:1405–1413

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa K, Ogawa H, Burke GT, Chanley JD, Katsoyanis PG (1984b) Interaction between the A2 and A19 amino acid residues is of critical importance for high biological activity in insulin. Biochemistry 23:4444–4448

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Ohgaku S, Iwasaki M, Maegawa H, Shigeta Y, Inouye K (1982a) Characterization of [LeuB24]-and [LeuB25]insulin analogs. Biochem J 206:597–603

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Ohgaku S, Iwasaki M, Maegawa H, Shigeta Y, Inouye K (1982b) Supernormal insulin: [D-PheB24]insulin with increased affinity for insulin receptors. Biochem Biophys Res Commun 107:329–336

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Haneda M, Maegawa H, Watanabe N, Takato Y, Shigeta Y, Inouye K (1984a) Receptor binding and biological activity of [SerB24]insulin, an abnormal mutant insulin. Biochem Biophys Res Commun 119:49–57

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Haneda M, Ishibashi O, Takata Y, Maegawa H, Watanabe N, Shigeta Y (1984b) Prolonged disappearance rate of a structurally abnormal mutant insulin from the blood. Diabetes [Suppl 1] 33:17 A

    Google Scholar 

  • Kobayashi M, Takata Y, Ishibashi O, Sasoka T, Iwasaki M, Shigeta Y, Inouye K (1986) Receptor binding and negative cooperativity of a mutant insulin [LeuA3]insulin. Biochem Biophys Res Commun 137:250–257

    Article  PubMed  CAS  Google Scholar 

  • Kwok SCM, Chan SJ, Rubenstein AH, Poucher R, Steiner DF (1981) Loss of restriction endonuclease cleavage site in the gene of a structurally abnormal insulin. Biochem Biophys Res Commun 98:844–849

    Article  PubMed  CAS  Google Scholar 

  • Kwok SCM, Steiner DF, Rubenstein AH, Tager HS (1983) Identification of the mutation giving rise to insulin Chicago. Diabetes 32:872–875

    Article  PubMed  CAS  Google Scholar 

  • Mirmira RG, Tager HS (1989) Role of the phenylalanine B24 side chain in directing insulin interaction with its receptor. J Biol Chem 264:6349–6354

    PubMed  CAS  Google Scholar 

  • Nakagawa SH, Tager HS (1986) Role of the phenylalanine B25 side chain in directing insulin interaction with its receptor. J Biol Chem 261:7332–7341

    PubMed  CAS  Google Scholar 

  • Nakagawa S, Tager HS (1987) Role of the COOH-terminal B-chain domain in insulin-receptor interactions. J Biol Chem 262:12054–12058

    PubMed  CAS  Google Scholar 

  • Nanjo K, Sanke T, Miyano M, Okai K, Sowa R, Kondo M, Nishimura S et al. (1986a) Diabetes due to secretion of a structurally abnormal insulin (insulin Wakayama). J Clin Invest 77:514–519

    Article  PubMed  CAS  Google Scholar 

  • Nanjo K, Given B, Sänke T, Kondo M, Miyano M, Okai K, Miyama K et al. (1986b) Pancreatic function in the mutant insulin syndrome. Diabetes [Suppl 1] 35:77 A

    Google Scholar 

  • Orci L, Ravazzola M, Amherdt M, Madsen O, Vassaili J-D, Perrelet A (1985) Direct identification of prohormone conversion site in insulin-secreting cells. Cell 42:671–681

    Article  PubMed  CAS  Google Scholar 

  • Peavy DE, Brunner MR, Duckworth WC, Hooker CS, Frank BH (1985) Receptor binding and biological potency of several split forms (conversion intermediates) of human proinsulin. J Biol Chem 26:13989–13994

    Google Scholar 

  • Robbins DC, Blix PM, Rubenstein AH, Kanazawa Y, Kosaka K, Tager HS (1981) A human proinsulin variant at arginine 65. Nature 291:679–681

    Article  PubMed  CAS  Google Scholar 

  • Robbins DC, Shoelson SE, Rubenstein AH, Tager HS (1984) Familial hyperproinsulinemia: two cohorts secreting indistinguishable type II intermediates of proinsulin conversion. J Clin Invest 73:714–719

    Article  PubMed  CAS  Google Scholar 

  • Sanz N, Karam JH, Horita S, Bell GI (1985) DNA screening for insulin gene mutations in non-insulin-dependent diabetes mellitus (NIDDM). Diabetes [Suppl 1] 34:85 A

    Google Scholar 

  • Schwartz GP, Burke GT, Katsoyanis PG (1987) A superactive insulin: [B10-aspartic acid]insulin (human). Proc Natl Acad Sci USA 84:6408–6411

    Article  PubMed  CAS  Google Scholar 

  • Schwartz TW, Witteis B, Tager HS (1983) Hormone precursor processing in the pancreatic islet. In: Hruby VJ, Rich DH (eds) Peptides: structure and function. Pierce Chemical Company, Rockford, pp 229–238

    Google Scholar 

  • Shibasaki Y, Kawakami T, Kanazawa Y, Akamura Y, Takaku T (1985) Posttranslational cleavage of proinsulin is blocked by a point mutation in familial hyperproinsulmemia. J Clin Invest 76:378–380

    Article  PubMed  CAS  Google Scholar 

  • Shoelson S, Haneda M, Blix P, Nanjo K, Sanke T, Inouye K, Steiner D et al. (1983a) Three mutant insulins in man. Nature 302:540–543

    Article  PubMed  CAS  Google Scholar 

  • Shoelson S, Fickova M, Haneda M, Nahum A, Musso G, Kaiser ET, Rubenstein AH, Tager HS (1983b) Identification of a mutant insulin predicted to contain a serine-forphenylalanine substitution. Proc Natl Acad Sci USA 80:7390–7394

    Article  PubMed  CAS  Google Scholar 

  • Shoelson SE, Polonsky KS, Zeidler A, Rubenstein AH, Tager HS (1984) Human insulin (Phe→Ser): secretion and metabolic clearance of the abnormal insulin in man and in a dog model. J Clin Invest 73:1351–1358

    Article  PubMed  CAS  Google Scholar 

  • Smith GD, Swenson DC, Dodson EJ, Dodson GG, Reynolds CD (1984) Structural stability in the 4-zinc human insulin hexamer. Proc Natl Acad Sci USA 81.7093–7097

    Article  PubMed  CAS  Google Scholar 

  • Steiner DF (1977) Insulin today. Diabetes 26:322–340

    PubMed  CAS  Google Scholar 

  • Steiner DF, Cunningham DD, Spigelman S, Aten B (1967) Insulin biosynthesis: evidence for a precursor. Science 157:697–700

    Article  PubMed  CAS  Google Scholar 

  • Steiner DF, Clark JL, Nolan C, Rubenstein AH, Margoliash E, Aten B, Oyer PE (1969) Proinsulin and the biosynthesis of insulin. Recent Prog Horm Res 25:207–282

    PubMed  CAS  Google Scholar 

  • Steiner DF, Quinn PS, Chan SJ, Marsh J, Tager HS (1980) Processing mechanisms in the biosynthesis of proteins. Ann NY Acad Sci 343:1–16

    Article  PubMed  CAS  Google Scholar 

  • Tager HS, Given B, Baldwin D, Mako M, Markese J, Rubenstein AH, Olefsky J et al. (1979) A structurally abnormal insulin causing human diabetes. Nature 281:122–125

    Article  PubMed  CAS  Google Scholar 

  • Tager HS, Palzelt C, Assoian RK, Chan SJ, Duguid JR, Steiner DF (1980a) Biosynthesis of islet cell hormones. Ann NY Acad Sci 343:133–147

    Article  PubMed  CAS  Google Scholar 

  • Tager HS, Thomas N, Assoian R, Rubenstein A, Saekow M, Olefsky J, Kaiser ET (1980b) Semisynthesis and biological activity of porcine [LeuB24]insulin and [LeuB25]insulin. Proc Natl Acad Sci USA 77:3181–3185

    Article  PubMed  CAS  Google Scholar 

  • Terris S, Steiner DF (1975) Binding and degradation of 125I-insulin by rat hepatocytes. J Biol Chem 250:8389–8398

    PubMed  CAS  Google Scholar 

  • Terris S, Steiner DF (1976) Retention and degradation of 125I-insulin by perfused livers from diabetic rats. J Clin Invest 57:885–896

    Article  PubMed  CAS  Google Scholar 

  • Ullrich A, Dull TJ, Gray A, Brosius J, Sives I (1980) Genetic variation in the human insulin gene. Science 209:612–615

    Article  PubMed  CAS  Google Scholar 

  • Wollmer A, Strassburger W, Glatler V, Dodson GG, McCall M, Danho W, Brandenburg D et al. (1981) Two mutant forms of human insulin: structural consequences of the substitution of invariant B24 or B25 by leucine. Hoppe Seylers Z Physiol Chem 362:581–592

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tager, H.S. (1990). Mutant Human Insulins and Insulin Structure-Function Relationships. In: Cuatrecasas, P., Jacobs, S. (eds) Insulin. Handbook of Experimental Pharmacology, vol 92. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74098-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74098-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74100-5

  • Online ISBN: 978-3-642-74098-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics