Skip to main content

Phototransduction in Limulus Ventral Photoreceptors: Roles of Calcium and Inositol Trisphosphate

  • Conference paper
Facets of Vision

Abstract

The rhabdomere of invertebrate photoreceptors has long been considered to be the site of visual transduction. Exner wrote in 1891 (p. 96) “This arrangement suggests that the most fundamental visual process — the transduction of light energy into nervous excitation — be it by photochemical or other means takes place, or is at least initiated during the passage of light along the strongly refracting rods.” Modern electrophysiological experiments (Hagins et al. 1962; Lasansky and Fuortes 1969) conclusively demonstrated that the microvillar membrane of the rhabdomere, which contains the visual pigment, is the site where electrical current flows into the cell upon illumination. This photocurrent underlies the receptor potential, which is a depolarization of the receptor cell membrane (Millecchia and Mauro 1969).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Autrum H (ed) (1981) Light and dark adaptation in invertebrates. In: Handbook of sensory physiology, vol VII/6c. Springer, Berlin Heidelberg New York, pp 1–92.

    Google Scholar 

  • Bacigalupo J, Lisman J (1983) Single channel currents activated by light in Limulus ventral photoreceptors. Nature (London) 304:268–270.

    Article  CAS  Google Scholar 

  • Berridge MJ (1983) Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J 212:849–858.

    PubMed  CAS  Google Scholar 

  • Bitensky MW, Wheeler MA, Rasenick MM, Yamazaki A, Stein P, Halliday KR, Wheeler GL (1982) Functional exchange of components between light-activated photoreceptor phosphodiesterase and hormone-activated adenylate cyclase systems. Proc Natl Acad Sci USA 179:3408–3412.

    Article  Google Scholar 

  • Brown JE, Blinks JR (1974) Changes in intracellular free calcium during illumination of invertebrate photoreceptors. Detection with aequorin. J Gen Physiol 64:643–665.

    Article  PubMed  CAS  Google Scholar 

  • Brown JE, Rubin LJ (1984) A direct demonstration that inositol-trisphosphate induces an increase in intracellular calcium in Limulus photoreceptor. Biochem Biophys Res Commun 125:1137–1142.

    Article  PubMed  CAS  Google Scholar 

  • Brown JE, Rubin LJ, Ghalayini AJ, Tarver AP, Irvine RF, Berridge MJ, Anderson RE (1984) Myo-inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors. Nature (London) 311:160–163.

    Article  CAS  Google Scholar 

  • Calman BG, Chamberlain SC (1982) Distinct lobes of Limulus ventral photoreceptors II. Structure and ultrastructure. J Gen Physiol 80:839–862.

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain SC, Barlow RB, Jr (1984) Transient membrane shedding in Limulus photoreceptors: control mechanisms under natural lighting. J Neurosci 4:2792–2810.

    PubMed  CAS  Google Scholar 

  • Cone RA (1973) The internal transmitter model for visual excitation. Some quantitative implications. In: Langer H (ed) Biochemistry and physiology of visual pigments. Springer, Berlin Heidelberg New York, pp 275–282.

    Google Scholar 

  • Devary O, Heichal O, Blumenfeld A, Cassel A, Suss A, Barash A, Rubinstein T, Minke B, Selinger Z (1987) Coupling of photoexcited rhodopsin to phospholipid hydrolysis in fly photoreceptors. Proc Natl Acad Sci USA 84:6939–6943.

    Article  PubMed  CAS  Google Scholar 

  • Ebrey TG, Tsuda M, Sassanrath G, West JL, Waddell WH (1980) Light-activation of bovine rod phosphodiesterase by non-physiological visual pigments. FEBS Lett 116:217–219.

    Article  PubMed  CAS  Google Scholar 

  • Exner S (1891) Die Physiologie der facettirten Augen von Krebsen und Insecten. Deuticke, Leipzig.

    Book  Google Scholar 

  • Fein A, Lisman JE (1975) Localized desensitization of Limulus photoreceptors produced by light or intracellular calcium ion injection. Science 187:1094–1096.

    Article  PubMed  CAS  Google Scholar 

  • Fein A, Payne R, Corson DW, Berridge MJ, Irvine RF (1984) Photoreceptor excitation and adaptation by inositol 1,4,5 trisphosphate. Nature (London) 311:157–160.

    Article  CAS  Google Scholar 

  • Fuortes MGF, O’Bryan PM (1972) Physiology of Photoreceptor Organs. In: Fuortes MGF (ed) Handbook of sensory physiology, vol II/2. Springer, Berlin Heidelberg New York, pp 279–319.

    Google Scholar 

  • Grado C, Ballou CE (1961) Myo-inositol phosphates obtained by alkaline hydrolysis of beef brain polyphosphoinositide. J Biol Chem 236:54–60.

    PubMed  CAS  Google Scholar 

  • Hagins WA (1972) The visual process: Excitatory mechanisms in the primary receptor cells. Annu Rev Biophys Bioeng 1:131–158.

    Article  PubMed  CAS  Google Scholar 

  • Hagins WA, Zonana HV, Adams RG (1962) Local membrane current in the outer segments of squid photoreceptors. Nature (London) 194:843–844.

    Article  Google Scholar 

  • Hall ZW (1987) Three of a kind: the ß-adrenergic receptor, the muscarinic acetylcholine receptor, and rhodopsin. Trends Neurosci 10:99–101.

    Article  CAS  Google Scholar 

  • Hamdorf K (1970) Korrelation zwischen Sehfarbstoff und Empfindlichkeit bei Photorezeptoren. Verh Dtsch Zool Ges 64:148–157.

    Google Scholar 

  • Horridge GA, Barnard PBT (1965) Movement of palisade in locust retinula cells when illuminated. QJ Microsc Sci 106:131–135.

    CAS  Google Scholar 

  • Johnson EC, Robinson PR, Lisman JE (1986) Cyclic GMP is involved in the excitation of invertebrate photoreceptors. Nature (London) 324:468–470.

    Article  CAS  Google Scholar 

  • Kirchhoffer O (1908) Untersuchungen über die Augen Käfer pentamerer Käfer. Arch Biontol 2:237–287.

    Google Scholar 

  • Kubo T, Fukuda K, Mikami A, Maeda A, Takahashi H, Mishina M, Haga T, Haga K, Ichiyama A, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1986) Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature (London) 323:411–416.

    Article  CAS  Google Scholar 

  • Lasansky A, Fuortes MGF (1969) The site of origin of electrical responses in visual cells of the leech Hirudo medicinalis. J Cell Biol 42:241–252.

    Article  PubMed  CAS  Google Scholar 

  • Levitski A (1986) ß-Adrenergic receptors and their mode of coupling to adenylate cyclase. Physiol Rev 66:819–854.

    Google Scholar 

  • Levy S, Fein A (1985) Relationship between light sensitivity and intracellular free Ca concentration in Limulus ventral photoreceptors. A quantitative study using Ca-selective microelectrodes. J Gen Physiol 85:805–841.

    Article  PubMed  CAS  Google Scholar 

  • Lisman JE, Brown JE (1972) The effects of intracellular iontophoretic injection of calcium and sodium ions on the light response of Limulus ventral photoreceptors. J Gen Physiol 59:701–719.

    Article  PubMed  CAS  Google Scholar 

  • Lisman JE, Brown JE (1975) Effects of intracellular injection of calcium buffers on light adaptation in Limulus ventral photoreceptors. J Gen Physiol 66:489–506.

    Article  PubMed  CAS  Google Scholar 

  • Lisman JE, Strong JA (1979) The initiation of excitation and light adaptation in Limulus ventral photoreceptors. J Gen Physiol 73:219–243.

    Article  PubMed  CAS  Google Scholar 

  • Millecchia R, Mauro A (1969) The ventral photoreceptor cells of Limulus. III. A voltage-clamp study. J Gen Physiol 54:331–351.

    Article  PubMed  CAS  Google Scholar 

  • O’Tousa JE, Baehr W, Martin RL, Hirsch W, Pak WL, Applebury ML (1985) The Drosophila ninaE gene encodes an opsin. Cell 40:839–850.

    Article  PubMed  Google Scholar 

  • Payne R (1986) Phototransduction by microvillar photoreceptors of invertebrates: mediation of a visual cascade by inositol 1,4,5 trisphosphate. Photobiochem Photobiophys 13:373–397.

    CAS  Google Scholar 

  • Payne R, Fein A (1983) Localized adaptation within the rhabdomeral lobe of Limulus ventral photoreceptors. J Gen Physiol 81:767–769.

    Article  PubMed  CAS  Google Scholar 

  • Payne R, Fein A (1986) Localization of the photocurrent of Limulus ventral photoreceptors using a vibrating probe. Biophys J 50:193–196.

    Article  PubMed  CAS  Google Scholar 

  • Payne R, Fein A (1987a) Inositol 1,4,5 trisphosphate releases calcium from specialized sites within Limulus photoreceptors. J Cell Biol 104:933–938.

    Article  PubMed  CAS  Google Scholar 

  • Payne R, Fein A (1987b) Rapid desensitization terminates the response of Limulus photoreceptors to brief injections of inositol trisphosphate. Biol Bull (Abstr) 173:447–448.

    Google Scholar 

  • Payne R, Corson DW, Fein A (1986a) Pressure injection of calcium both excites and adapts Limulus ventral photoreceptors. J Gen Physiol 88:107–126.

    Article  PubMed  CAS  Google Scholar 

  • Payne R, Corson DW, Fein A, Berridge MJ (1986b) Excitation and adaptation of Limulus ventral photoreceptors by inositol 1,4,5 trisphosphate result from a rise in intracellular calcium. J Gen Physiol 88:127–142.

    Article  PubMed  CAS  Google Scholar 

  • Perrelet A, Bader ChR (1978) Morphological evidence for calcium stores in the photoreceptors of the honeybee drone retina. J Ultrastruct. Res 63:237–243.

    Article  PubMed  CAS  Google Scholar 

  • Saibil HR (1984) A light-stimulated increase of cyclic GMP in squid photoreceptors. FEBS Lett 168:213–216.

    Article  PubMed  CAS  Google Scholar 

  • Saibil HR, Michel-Villaz M (1984) Squid rhodopsin and GTP-binding protein cross-react with vertebrate photoreceptor systems. Proc Natl Acad Sci USA 81:5111–5115.

    Article  PubMed  CAS  Google Scholar 

  • Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan Aequorea. J Cell Comp Physiol 59:223–240.

    Article  PubMed  CAS  Google Scholar 

  • Snyder AW, Horridge GA (1972) The optical function of changes in the medium surrounding the cockroach rhabdom. J Comp Physiol A 81:1–8.

    Article  Google Scholar 

  • Stern J, Chinn K, Bacigalupo J, Lisman JE (1982) Distinct lobes of Limulus ventral photoreceptors. I. Functional and anatomical properties of lobes revealed by removal of glial cells. J Gen Physiol 80:825–837.

    Article  PubMed  CAS  Google Scholar 

  • Streb H, Bayerdorffer E, Haase W, Irvine RF, Schulz I (1984) Effect of inositol 1,4,5 trisphosphate on isolated subcellular fractions of rat pancreas. J Membrane Biol 81:241–253.

    Article  CAS  Google Scholar 

  • Stryer L (1986) The cGMP cascade of vision. Annu Rev Neurosci 9:87–119.

    Article  PubMed  CAS  Google Scholar 

  • Szuts EZ, Wood SF, Reid MA, Fein A (1986) Light stimulates the rapid formation of inositol trisphosphate in squid retinae. Biochem J 240:929–932.

    PubMed  CAS  Google Scholar 

  • Tomlinson RV, Ballou CE (1961) Complete characterization of myo-inositol polyphosphates obtained from beef brain polyphosphoinositides. J Biol Chem 236:1902–1906.

    PubMed  CAS  Google Scholar 

  • Tsuda M (1987) Photoreception and phototransduction in invertebrate photoreceptors. Photochem Photobiol 45:915–931.

    Article  CAS  Google Scholar 

  • Vandenberg CA, Montai M (1984) Light-regulated biochemical events in invertebrate photoreceptors. I. Light-activated guanosine-triphosphatase, guanine nucleotide binding, and cholera toxin labeling of squid photoreceptor membranes. Biochemistry 23:2339–2347.

    Article  PubMed  CAS  Google Scholar 

  • Walz B (1982a) Calcium-sequestering smooth endoplasmic reticulum in retinular cells of the blowfly. J Ultrastruct Res 81:240–248.

    Article  PubMed  CAS  Google Scholar 

  • Walz B (1982b) Ca2+-sequestering smooth endoplasmic reticulum in an invertebrate photoreceptor. II. Its properties as revealed by microphotometric methods. J Cell Biol 93:849–859.

    Article  PubMed  CAS  Google Scholar 

  • Walz B, Fein A (1983) Evidence for calcium-sequestering smooth ER in Limulus ventral photoreceptors. Invest. Opthalmol. Visual Sci 24 (Suppl):281.

    Google Scholar 

  • Whittle AC (1976) Reticular specializations in photoreceptors: A review. Zool Scr 5:191–206.

    Article  Google Scholar 

  • Zuker CS, Cowman AF, Rubin GM (1985) Isolation and structure of a rhodopsin gene from D. melanogaster. Cell 40:851–858.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fein, A., Payne, R. (1989). Phototransduction in Limulus Ventral Photoreceptors: Roles of Calcium and Inositol Trisphosphate. In: Stavenga, D.G., Hardie, R.C. (eds) Facets of Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74082-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74082-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74084-8

  • Online ISBN: 978-3-642-74082-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics