Skip to main content

Pigments in Compound Eyes

  • Conference paper
Facets of Vision

Abstract

Vision has evolved because of the universal presence of pigments, i.e., substances which absorb light in the visible and thus provide objects with their color. The visual instruments themselves, the eyes, can also only properly execute their function by virtue of the pigments they contain. Three classes of eye pigments can readily be distinguished. Primarily, of course, the photolabile visual pigments, which absorb the light entering the eye and then trigger the phototransduction chain, and the related retinoid-binding proteins, which together maintain visual pigment concentration and thus light sensitivity. Secondly, the photostable screening pigments, whose main function is to block out unwanted stray light. A third class comprises the pigments in the mitochondrial respiratory chain, universally present in eukaryotic cells; the aptly called cytochromes, together with the functionally related flavoproteins and NADH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoto T, Hisano S (1985) Ultrastructural evidence for the existence of the distal retinal pigment light-adapting hormone in the sinus gland of the prawn Pdaemon paucidens. Gen Comp Endocrinol 60:468–474.

    Article  PubMed  CAS  Google Scholar 

  • Autrum H (ed) (1981) Light and dark adaptation in invertebrates. In: Handbook of sensory physiology, vol VII/6C. Springer, Berlin Heidelberg New York, pp 1–91.

    Google Scholar 

  • Banister MJ, White RH (1987) Pigment migration in the compound eye of Manduca sexta: effects of light, nitrogen and carbon dioxide. J Insect Physiol 33:733–743.

    Article  Google Scholar 

  • Barlow RB, Chamberlain SC, Levinson JZ (1980) Limulus brain modulates the structure and function of the lateral eyes. Science 210:1037–1039.

    Article  PubMed  Google Scholar 

  • Barlow RB, Kaplan E, Renninger GH, Saito T (1985) Efferent control of circadian rhythms in the Limulus lateral eye. Neurosci Res (Suppl) 2:S65–S78.

    Article  Google Scholar 

  • Bennett RR, Brown PK (1985) Properties of the visual pigments of the moth Manduca sexta and the effects of the two detergents, digitonin and chaps. Vision Res 25:1771–1781.

    Article  PubMed  CAS  Google Scholar 

  • Bernard GD (1979) Red-absorbing visual pigment of butterflies. Science 203:1125–1127.

    Article  PubMed  CAS  Google Scholar 

  • Bernard GD, Owens ED, Hurley AV (1984) Intracellular optical physiology of the eye of the pyralid moth Amyelois. J Exp Zool 229:173–187.

    Article  Google Scholar 

  • Blest AD, deCouet HG, Howard J, Wilcox M, Sigmund C (1984) The extrarhabdomeral cytoskeleton in photoreceptors of Diptera. I. Labile components in the cytoplasm. Proc R Soc London Ser B220-339-352.

    Google Scholar 

  • Bouthier A (1981) Les ommochromes, pigments absorbantes des yeux des Arthropodes. Arch Zool Exp Gen 122:237–252.

    Google Scholar 

  • Bryceson K (1986) The effect of screening pigment migration on spectral sensitivity in a crayfish reflecting superposition eye. J Exp Biol 125:401–404.

    Google Scholar 

  • Bryceson K, McIntyre P (1983) Image quality and acceptance angle in a reflecting superposition eye. J Comp Physiol A 151:367–380.

    Article  Google Scholar 

  • Burghause FMHR (1979) Die stukturelle Spezialisierung des dorsalen Augenteils der Grillen (Orthoptera, Grylloidea). Zool Jahrb Physiol 83:502–525.

    Google Scholar 

  • Butler R, Horridge GA (1973) The electrophysiology of the retina of Periplaneta americana L. 1. Changes in receptor acuity upon light/dark adaptation. J Comp Physiol 83:263–278.

    Article  Google Scholar 

  • Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. In: Nord FF (ed) Advances in enzymology, vol 17. Interscience, New York, pp 65–134.

    Google Scholar 

  • Chi C, Carlson SD (1976) The large pigment cell of the compound eye of the house fly Musca domestica. Fine structure and cytoarchitectural associations. Cell Tissue Res 170:77–88.

    Article  PubMed  CAS  Google Scholar 

  • Cronin TW (1985) The visual pigment of a stomatopod crustacean, Squilla empusa. J Comp Physiol A 156:679–687.

    Article  CAS  Google Scholar 

  • Cronin TW (1988) Visual pigments and spectral sensitivity in the stomatopods. Boll Zool (in press).

    Google Scholar 

  • Cronin TW, Forward RB, Jr. (1988) The visual pigments of crabs. I. Spectral characteristics. J Comp Physiol A 162:463–478.

    Article  CAS  Google Scholar 

  • Cronin TW, Goldsmith TH (1981) Fluorescence of crayfish metarhodopsin studied in single rhabdoms. Biophys J 35:653–664.

    Article  PubMed  CAS  Google Scholar 

  • Cronin TW, Goldsmith TH (1982a) Photosensitivity spectrum of crayfish rhodopsin measured using fluorescence of metarhodopsin. J Gen Physiol 79:313–332.

    Article  PubMed  CAS  Google Scholar 

  • Cronin TW, Goldsmith TH (1982b) Quantum efficiency and photosensitivity of the rhodopsin⇌ metarhodopsin conversion in crayfish photoreceptors. Photochem Photobiol 36:447–454.

    Article  PubMed  CAS  Google Scholar 

  • Dontsov AE, Lapina VA, Ostrovsky MA (1984) O.2 photogeneration by ommochromes and their role in the system of antioxidative protection of invertebrate cells. Biofyzika 29:878–882.

    CAS  Google Scholar 

  • Doughtie DG, Rao KR (1984) Ultrastructure of the eyes of the grass shrimp, Palaemonetes pugio. General morphology, and light and dark adaptation at noon. Cell Tissue Res 238:271–288.

    Article  Google Scholar 

  • Dustmann JH (1975) The pigment granules in the compound eye of the honey bee Apis mellifica in wild type and different eye-color mutants. Cytobiology 11:133–152.

    Google Scholar 

  • Exner S (1891) Die Physiologie der facettirten Augen von Krebsen und Insecten. Deuticke, Leipzig.

    Book  Google Scholar 

  • Fein A, Tsacopoulos M (1988) Activation of mitochondrial oxidative metabolism by calcium ions in Limulus ventral photoreceptors. Nature (London) 331:437–440.

    Article  CAS  Google Scholar 

  • Fernlund P, Josefsson L (1972) Crustacean color-change hormone: Amino acid sequence and chemical synthesis. Science 177:173–175.

    Article  PubMed  CAS  Google Scholar 

  • Franceschini N (1975) Sampling of the visual environment by the compound eye of the fly: Fundamentals and applications. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 98–125.

    Chapter  Google Scholar 

  • Franceschini N (1977) In vivo fluorescence of the rhabdomeres in an insect eye. Proc Int Union Physiol Sci XII, 237. XXVIIth Int Congr, Paris.

    Google Scholar 

  • Franceschini N, Kirschfeld K (1976) Le contrôle automatique du flux lumineux dans l’oeil composé des Diptères. Propriétés spectrales, statiques et dynamiques du mécanisme. Biol Cybernet 21:181–203.

    Article  Google Scholar 

  • Franceschini N, Kirschfeld K, Minke B (1981) Fluorescence of photoreceptor cells observed in vivo. Science 213:1264–1267.

    Article  PubMed  CAS  Google Scholar 

  • Frixione E (1983a) The microtubular system of crayfish retinula cells and its changes in relation to screening-pigment migration. Cell Tissue Res 232:335–348.

    Article  PubMed  CAS  Google Scholar 

  • Frixione E (1983b) Firm structural associations between migratory pigment granules and microtubules in crayfish retinula cells. J Cell Biol 96:1258–1265.

    Article  PubMed  CAS  Google Scholar 

  • Frixione E, Aréchiga H (1981) Ionic dependence of screening pigment migrations in crayfish retinal photoreceptors. J Comp Physiol A 144:35–43.

    Article  CAS  Google Scholar 

  • Frixione E, Ruiz L (1988) Calcium uptake by smooth endoplasmic reticulum of peeled retinal photoreceptors of the crayfish. J Comp Physiol A 162:91–100.

    Article  CAS  Google Scholar 

  • Frixione E, Aréchiga H, Tsutsumi V (1979) Photomechanical migrations of pigment granules along the retinula cells of the crayfish. J Neurobiol 10:573–590.

    Article  PubMed  CAS  Google Scholar 

  • Friza F (1929) Zur Frage der Färbung und Zeichnung des facettierten Insektenauges. Z Vergl Physiol 8:289–336.

    Article  Google Scholar 

  • Fuzeau-Braesch S (1985) Colour changes. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 10. Biochemistry. Pergamon, Oxford New York, pp 549–589.

    Google Scholar 

  • Goldsmith TH (1978) The effects of screening pigments on the spectral sensitivity of some crustacea with scotopic (superposition) eyes. Vision Res 18:475–482.

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith TH, Bernard GD (1974) The visual system of insects. In: Rockstein M (ed) The physiology of Insecta, vol 2. Academic Press, New York San Francisco, pp 165–272.

    Google Scholar 

  • Gribakin FG (1988) Photoreceptor optics of the honeybee and its eye colour mutants: The effect of screening pigments on the long wave subsystem of colour vision. J Comp Physiol A 164:123–140.

    Article  Google Scholar 

  • Hallberg E (1977) The fine structure of the compound eye of mysids (Crustacea: Mysidacea). Cell Tissue Res 184:45–65.

    Article  PubMed  CAS  Google Scholar 

  • Hamdorf K, Höglund G (1981) Light induced retinal screening pigment migration independent of visual cell activity. J Comp Physiol A 143:305–309.

    Article  Google Scholar 

  • Hamdorf K, Langer H (1966) Der Sauerstoffverbrauch des Facettenauges von Calliphora erythrocephala in Abhängigkeit von der Temperatur und dem Ionenmilieu. Z Vergl Physiol 52:386–400.

    Article  Google Scholar 

  • Hamdorf K, Höglund G, Juse A (1986) Ultra-violet and blue induced migration of screening pigment in the retina of the moth Deilephila elpenor. J Comp Physiol A 159:353–362.

    Article  Google Scholar 

  • Hamdorf K, Hochstrate P, Höglund G, Burbach B, Wiegand U (1988) Light activation of the sodium pump in blowfly photoreceptors. J Comp Physiol A 162:285–300.

    Article  Google Scholar 

  • Hardie RC (1979) Electrophysiological analysis of the fly retina. I. Comparative propertiesof R1–6 and R7 and R8. J Comp Physiol A 129:19–33.

    Article  Google Scholar 

  • Hardie RC (1985) Functional organization of the fly retina. In: Ottoson D (ed) Progress in sensory physiology, vol 5. Springer, Berlin Heidelberg New York, pp 1–79.

    Chapter  Google Scholar 

  • Hardie RC (1986) The photoreceptor array of the dipteran retina. Trends Neurosci 9:419–423.

    Article  Google Scholar 

  • Hardie RC, Franceschini N, Ribi W, Kirschfeld K (1981) Distribution and properties of sex-specific photoreceptors in the fly Musca domestica. J Comp Physiol A 145:139–15.

    Article  Google Scholar 

  • Hengstenberg R, Götz KG (1967) Der Einfluß des Schirmpigmentgehalts auf die Helligkeits — und Kontrastwahrnehmung bei Drosophila Augenmutanten. Kybernetik 3:276–285.

    Article  PubMed  CAS  Google Scholar 

  • Höglund G, Struwe G (1970) Pigment migration and spectral sensitivity in the compound eye of moths. Z Vergl Physiol 67:229–237.

    Article  Google Scholar 

  • Howard FW (1981) Pigment migration in the eye of Myndus crudus (Homoptera: Cixiidae) and its relationship to day and night activity. Insect Sci Appl 2:129–133.

    Google Scholar 

  • Howard J (1984) Calcium enables photoreceptor pigment migration in a mutant fly. J Exp Biol 113:471–475.

    Google Scholar 

  • Howard J, Blakeslee B, Laughlin SB (1987) The intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia cuprina. Proc R Soc London Ser B 231:415–435.

    Article  CAS  Google Scholar 

  • Jones GJ, Tsacopoulos M (1987) The response to monochromatic light flashes of the oxygen consumption of honeybee drone photoreceptors. J Gen Physiol 89:791–813.

    Article  PubMed  CAS  Google Scholar 

  • Juse A, Höglund G, Hamdorf K (1987) Reversed light reaction of the screening pigment in a compound eye induced by noradrenaline. Z Naturforsch 42c:973–976.

    Google Scholar 

  • Kargacin GJ, Detwiler PB (1985) Light-evoked contraction of the photosensitive iris of the frog. J Neurosci 5:3081–3087.

    PubMed  CAS  Google Scholar 

  • Kayser H (1985) Pigments. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 10. Biochemistry. Pergamon, Oxford New York, pp 367–415.

    Google Scholar 

  • Keilin D (1925) On cytochrome, a respiratory pigment, common to animals, yeast, and higher plants. Proc R Soc London Ser B 98:312–339.

    Article  Google Scholar 

  • Keilin D (1966) The history of cell respiration and cytochrome. Univ Press, Cambridge.

    Google Scholar 

  • Kirschfeld K, Vogt K (1980) Calcium ions and pigment migration in fly photoreceptors. Naturwissenschaften 67:516–517.

    Article  CAS  Google Scholar 

  • Kirschfeld K, Feiler R, Franceschini N (1978) A photostable pigment within the rhabdomere of fly photoreceptors no. 7. J Comp Physiol 125:275–284.

    Article  CAS  Google Scholar 

  • Kleinholz LH (1957) Endocrinology of invertebrates, particularly of crustaceans. In: Scheer BT, Bullock TH, Kleinholz LH (eds) Recent advances in invertebrate physiology. Univ Press Oregon, Eugene, pp 173–196.

    Google Scholar 

  • Kruizinga B, Stavenga DG (1989) Fluorescence spectra of blowfly metaxanthopsins (submitted).

    Google Scholar 

  • Labhart T, Hodel B, Valenzuela I (1986) The physiology of the cricket’s compound eye with particular reference to the anatomically specialized dorsal rim area. J Comp Physiol A 155:286–289.

    Google Scholar 

  • Lall AB, Strother GK, Cronin TW, Seliger HH (1988) Modification of spectral sensitivities by screening pigments in the compound eyes of twilight-active fireflies (Coleoptera: Lampyridae). J Comp Physiol A 162:23–33.

    Article  PubMed  CAS  Google Scholar 

  • Lambert DT, Fingerman M (1976) Evidence for a non-microtubular colchicine effect in pigment granule aggregation in melanophores of the fiddler crab, Uca pugilator. Comp Biochem Physiol 53C:25–28.

    Google Scholar 

  • Lambert DT, Fingerman M (1978) Colchicine and cytochalasin B: A further characterization of their actions on crustacean chromatophores using the ionophore A23187 and thiol reagents. Biol Bull 155:563–575.

    Article  CAS  Google Scholar 

  • Land MF (1986) Screening pigment migration in a sphingid moth is triggered by light near the cornea. J Comp Physiol A 160:355–357.

    Article  Google Scholar 

  • Langer H (1975) Properties and functions of screening pigments in insect eyes. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 429–455.

    Chapter  Google Scholar 

  • Laughlin SB (1981) Neural principles in the peripheral visual systems of invertebrates. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Springer, Berlin Heidelberg New York, pp 133–280.

    Google Scholar 

  • Leggett LMW, Stavenga DG (1981) Diurnal changes in angular sensitivity of crab photoreceptors. J Comp Physiol A 144:99–109.

    Article  Google Scholar 

  • Lehninger AL (1970) Biochemistry. Worth, New York.

    Google Scholar 

  • Leutscher-Hazelhoff JT, Barneveld HH van (1983) The Calliphora pupil and phototransduction modelling. Rev Can Biol Exp 3:263–270.

    Google Scholar 

  • Linzen B (1967) Zur Biochemie der Ommochrome. Unterteilung, Vorkommen, Biosynthese und physiologische Zusammenhänge. Naturwissenschaften 21b:259–267.

    Article  Google Scholar 

  • Luby-Phelps KJ, Schliwa M (1982) Pigment migration in chromatophores: A model system for intracellular particle transport. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 17–26.

    Google Scholar 

  • Menzi U (1987) Visual adaptation in nocturnal and diurnal ants. J Comp Physiol A 160:11–21.

    Article  Google Scholar 

  • Meyer-Rochow VB, Juberthie-Jupeau L (1983) An open rhabdom in a decapod crustacean: the eye of Typhlatya garcia (Atyidae) and its possible function. Biol Cell 49:273–282.

    Google Scholar 

  • Miller WH (1958) Fine structure of some invertebrate photoreceptors. Ann NY Acad Sci 74:204–209.

    Article  Google Scholar 

  • Miller WH (1979) Ocular optical filtering. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 69–143.

    Google Scholar 

  • Miller WH, Cawthon DF (1974) Pigment granule movement in Limulus photoreceptors. Invest Ophthalmol 13:401–405.

    PubMed  CAS  Google Scholar 

  • Payne R (1981) Suppression of noise in a photoreceptor by oxidative metabolism. J Comp Physiol A 142:181–188.

    Article  CAS  Google Scholar 

  • Pinter RB (1972) Frequency and time domain properties of retinula cells of the desert locust (Schistocerca gregaria) and the house cricket (Acheta domestica). J Comp Physiol 77:383–397.

    Article  Google Scholar 

  • Rao KR (1984) Pigmentary effectors. In: Bliss DE, Mantel H (eds) The biology of Crustacea, vol 9. Academic Press, New York London, pp 395–462.

    Google Scholar 

  • Rao KR, Fingerman M (1983) Regulation of release and mode of action of crustacean chromato-phorotropins. Am Zool 23:517–527.

    CAS  Google Scholar 

  • Rao KR, Riehm JR, Zahnow CA, Kleinholz LH, Tarr GE, Johnson L, Norton S, Landau M, Semmes OJ, Sattelberg RM, Jorenby WH, Hintz MF (1985) Characterization of a pigment-dispersing hormone in eyestalks of the fiddler crab Uca pugilator. Proc Natl Acad Sci USA 82:5319–5322.

    Article  PubMed  CAS  Google Scholar 

  • Rossel S (1979) Regional differences in photoreceptor performance in the eye of the praying mantis. J Comp Physiol A 131:95–112.

    Article  Google Scholar 

  • Rozdzial MM, Haimo LT (1986) Bidirectional pigment granule movements of melanophores are regulated by protein phosphorylation and dephosphorylation. Cell 47:1061–1070.

    Article  PubMed  CAS  Google Scholar 

  • Sandeen MI, Brown FA, Jr. (1952) Responses of the distal retinal pigment of Pataemonetes to illumination. Physiol Zool 25:222–230.

    Google Scholar 

  • Schlecht P, Juse A Höglund G, Hamdorf K (1987) Photoreconvertible fluorophore systems in rhabdomeres. Semper cells and corneal lenses in the compound eye of the blowfly. J Comp Physiol A 161:227–243.

    Article  PubMed  CAS  Google Scholar 

  • Scholz R, Thurman RG, Williamson JR, Chance B, Bucher T (1969) Flavin and pyridine nucleotide oxidation-reduction changes in perfused rat liver. I. Anoxia and subcellular localization of fluorescent flavoproteins. J Biol Chem 9:2317–2324.

    Google Scholar 

  • Shaw SR (1977) Restricted diffusion and extracellular space in the insect retina. J Comp Physiol 113:257–282.

    Article  CAS  Google Scholar 

  • Shaw SR, Stowe S (1982) Photoreception. In: Sandeman DC, Atwood HL (eds) The biology of Crustacea, vol 3. Academic Press, New York London, pp 291–367.

    Google Scholar 

  • Smakman JGJ, Hateren JH van, Stavenga DG (1984) Angular sensitivity of blowfly photoreceptors: Intracellular measurements and wave-optical predictions. J Comp Physiol A 155:239–247.

    Article  Google Scholar 

  • Stark WS, Ivanyshyn AM, Greenberg RM (1977) Sensitivity and photopigments of R1–6, a two-peaked photoreceptor, in Drosophila, Calliphora and Musca. J Comp Physiol 121:289–305.

    Article  CAS  Google Scholar 

  • Stavenga DG (1979) Pseudopupils of compound eyes. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 357–439.

    Google Scholar 

  • Stavenga DG (1983) Fluorescence of blowfly metarhodopsin. Biophys Struct Mech 9:309–317.

    Article  CAS  Google Scholar 

  • Stavenga DG, Schwemer J (1984) Visual pigments of invertebrates. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, pp 11–61.

    Google Scholar 

  • Stavenga DG, Zantema A, Kuiper JW (1973) Rhodopsin processes and the function of the pupil mechanism in flies. In: Langer H (ed) Biochemistry and physiology of visual pigments. Springer, Berlin Heidelberg New York, pp 175–180.

    Google Scholar 

  • Stavenga DG, Franceschini N, Kirschfeld K (1984) Fluorescence of housefly visual pigment. Photochem Photobiol 40:653–659.

    Article  CAS  Google Scholar 

  • Steiner A, Paul R, Gemperlein R (1987) Retinal receptor types in Aglais urticae and Pieris brassicae (Lepidoptera), revealed by analysis of the electroretinogram obtained with Fourier interferometric stimulation (FIS). J Comp Physiol A 160:247–258.

    Article  Google Scholar 

  • Stowe S (1980) Spectral sensitivity and retinal pigment movement in the crab Leptograpsus variegatus (Fabricius). J Exp Biol 87:73–98.

    PubMed  CAS  Google Scholar 

  • Strausfeld NJ (ed) (1984) Functional neuroanatomy. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Streck P (1972) Der Einfluss des Schirmpigmentes auf das Sehfeld einzelner Sehzellen der Fliege Calliphora erythrocephala Meig. Z Vergl Physiol 76:372–402.

    Article  Google Scholar 

  • Summer KM, Howells AJ, Pyliotes NA (1982) Biology of eye pigmentation in insects. Adv Insect Physiol 16:119–166.

    Article  Google Scholar 

  • Tinbergen J, Stavenga DG (1986) Photoreceptor redox state monitored in vivo by transmission and fluorescence microspectrophotometry in blowfly compound eyes. Vision Res 26:239–243.

    Article  PubMed  CAS  Google Scholar 

  • Tinbergen J, Stavenga DG (1987) Spectral sensitivity of light induced respiratory activity of photoreceptor mitochondria in the intact fly. J Comp Physiol A 160:195–203.

    Article  Google Scholar 

  • Tsacopoulos M, Fein A, Poitry S (1986) Stimulus-induced increase of mitochondrial respiration in a single neuron. Experientia 42:642.

    Google Scholar 

  • Trujillo-Cenóz O (1972) The structural organization of the compound eye in insects. In: Fuortes MGF (ed) Handbook of sensory physiology, vol VII/2. Springer, Berlin Heidelberg New York, pp 5–61.

    Google Scholar 

  • Tsutsumi V, Frixione E, Aréchiga H (1981) Transformations in the cytoplasmic structure of crayfish retinula cells during light-and dark-adaptation. J Comp Physiol A 145:179–189.

    Article  Google Scholar 

  • Veron JEN (1973) Physiological control of the chromatophores of Austrolestes annulosus (Odonata). J Insect Physiol 19:1689–1703.

    Article  Google Scholar 

  • Veron JEN (1974a) Physiological colour changes in Odonata eyes. A comparison between eye and epidermal chromatophore pigment migrations. J Insect Physiol 20:1491–1505.

    Article  PubMed  CAS  Google Scholar 

  • Veron JEN (1974b) The role of physiological colour change in the thermoregulation of Austrolestes annulosus (Selys) (Odonata) Aust J Zool 22:457–469.

    Article  Google Scholar 

  • Walcott B (1974) Unit studies on light-adaptation in the retina of the crayfish, Cherax destructor. J Comp Physiol 94:207–218.

    Article  Google Scholar 

  • Walcott B (1975) Anatomical changes during light-adaptation in insect compound eyes. In: Horridge GA (ed) The compound eye and vision of insects. Oxford, Clarendon, pp 20–33.

    Google Scholar 

  • Weyrauther E (1986) Do retinula cells trigger the screening pigment migration in the eye of the moth Ephestia kuehniella? J Comp Physiol A 159:55–60.

    Article  Google Scholar 

  • Weyrauther E, Roebroek JGH, Stavenga DG (1988) Dye transport across the retinal basement membrane of the blowfly Calliphora erythrocephala. J Exp Biol (in press).

    Google Scholar 

  • White RH, Michaud NA (1980) Calcium is a component of ommochrome pigment granules in insect eyes. Comp Biochem Physiol 65A:239–242.

    Article  CAS  Google Scholar 

  • White RH, Banister MJ, Bennett RR (1983) Spectral sensitivity of pigment migration in the compound eye of Manduca sexta. J Comp Physiol A 153:59–66.

    Article  Google Scholar 

  • Wilcox M, Franceschini N (1984a) Stimulated drug uptake in a photoreceptor cell. Neurosci Lett 50:187–192.

    Article  PubMed  CAS  Google Scholar 

  • Wilcox M, Franceschini N (1984b) Illumination induces dye incorporation in photoreceptor cells. Science 225:851–854.

    Article  PubMed  CAS  Google Scholar 

  • Williams DS (1980) Organisation of the compound eye of a tipulid fly during the day and night. Zoomorphology 95:85–104.

    Article  Google Scholar 

  • Zhu H, Kirschfeld K (1984) Protection against photodestruction in fly photoreceptors by carotenoid pigments. J Comp Physiol A 154:153–156.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stavenga, D.G. (1989). Pigments in Compound Eyes. In: Stavenga, D.G., Hardie, R.C. (eds) Facets of Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74082-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74082-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74084-8

  • Online ISBN: 978-3-642-74082-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics