Skip to main content

Distribution of Insect Visual Chromophores: Functional and Phylogenetic Aspects

  • Conference paper
Facets of Vision

Abstract

The study of visual pigments started in earnest with the work of Boll and Kühne, both of whom were contemporaries of Exner. Whilst Boll (1876) discovered that the color of a frog retina fades when exposed to light, Kühne (1878) was the first to extract the visual pigment, finding its spectral absorptivity similar to the human spectral sensitivity under scotopic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernard GD (1983a) Bleaching of rhabdoms in eyes of intact butterflies. Science 219:69–71.

    Article  PubMed  CAS  Google Scholar 

  • Bernard GD (1983b) Dark-processes following photoconversion of butterfly rhodopsins. Biophys Struct Mech 9:227–286.

    Article  Google Scholar 

  • Boll F (1876) Zur Anatomie und Physiologie der Retina. Mber Berlin Akad 41:783–787.

    Google Scholar 

  • Bridges CDB (1972) The rhodopsin-porphyropsin visual system. In: Dartnall HJA (ed) Handbook of sensory physiology, vol VII/1. Springer, Berlin Heidelberg New York, pp 417–480.

    Google Scholar 

  • Burkhardt D (1962) Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp Soc Exp Biol 16:86–109.

    Google Scholar 

  • Chytil F, Ong DE (1984) Cellular retinoid-binding proteins. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids, vol 2. Academic Press, New York London, pp 89–123.

    Google Scholar 

  • Cowman AF, Zuker CS, Rubin GM (1986) An opsin gene expressed in only one photoreceptor cell type of Drosophila eye. Cell 44:705–710.

    Article  PubMed  CAS  Google Scholar 

  • Förster T (1951) Fluoreszenz organischer Verbindungen. Vandenhoeck & Ruprecht, Göttingen.

    Google Scholar 

  • Franceschini N (1983) In-vivo microspectrofluorimetry of visual pigments. In: Cosens DJ, Vince-Price D (eds) The biology of photoreception. Soc Exp Biol Symp 36:53–85.

    Google Scholar 

  • Fugate RD, Song PS (1980) Spectroscopic characterization of ß-lactoglobulin-retinol complex. Biochim Biophys Acta 625:28–42.

    PubMed  CAS  Google Scholar 

  • Gemperlein R, Paul R, Lindauer E, Steiner A (1980) UV fine structure of the spectral sensitivity of flies visual cells. Revealed by FIS (Fourier Interfermotoric Stimulation). Naturwissenschaften 67:565–566.

    Article  Google Scholar 

  • Goldsmith TH (1958) The visual system of the honeybee. Proc Natl Acad Sci 44:123–126.

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith TH, Barker RJ, Cohen CF (1964) Sensitivity of visual receptors of carotenoid-depleted flies: a vitamin A deficiency in an invertebrate. Science 146:65–67.

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith TH, Bernard GD, Marks BC, Tongoren I (1985) HPLC of unusual retinoids from arthropods. Invest Ophthalmol Vision Sci 26:293.

    Google Scholar 

  • Goldsmith TH, Marks BC, Bernard GD (1986) Separation and identification of geometric isomers of 3-hydroxyretinoids and occurrence in the eyes of insects. Vision Res 26:1763–1769.

    Article  PubMed  CAS  Google Scholar 

  • Goodman DS (1984) Plasma retinol-binding protein. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids, vol 2. Academic Press, New York London, pp 41–88.

    Google Scholar 

  • Guo AK (1981) Elektrophysiologische Untersuchungen zur Spektral-und Polarisations-Empfindlichkeit der Sehzellen von Calliphora erythrocephala III. Sci Sin 24:272–286.

    Google Scholar 

  • Hardie RC (1978) Peripheral visual function in the fly. PhD Thesis, Aust University, Canberra.

    Google Scholar 

  • Hardie RC (1985) Functional organization of the fly retina. In: Ottoson D (ed) Progress in sensory physiology, vol 5. Springer, Berlin Heidelberg New York, pp 1–79.

    Chapter  Google Scholar 

  • Hargrave PA (1982) Rhodopsin chemistry, structure and topography. In: Osborne N, Chader G (eds) Progress in retinal research. Oxford Univ Press, pp 1-51.

    Google Scholar 

  • Hennig W (1969) Die Stammesgeschichte der Insekten. Kramer, Frankfurt.

    Google Scholar 

  • Hennig W (1973) Handbuch der Zoologie, 2. edn, IV 2-2/31. De Gruyter, Berlin.

    Google Scholar 

  • Kayser H (1982) Carotenoids in insects. In: Britton G, Goodwin TW (eds) Carotenoid chemistry and biochemistry. Pergamon, Oxford New York, pp 195–210.

    Google Scholar 

  • Kirschfeld K (1983) Are photoreceptors optimal? TINS 6:97–101.

    Google Scholar 

  • Kirschfeld K, Vogt K (1986) Does retinol serve a sensitizing function in insect photoreeeptors? Vision Res 26:1771–1777.

    Article  PubMed  CAS  Google Scholar 

  • Kirschfeld K, Franceschini N, Minke B (1977) Evidence for a sensitising pigment in fly photoreeeptors. Nature (London) 269:386–390.

    Article  CAS  Google Scholar 

  • Kirschfeld K, Feiler R, Hardie R, Vogt K, Franceschini N (1983) The sensitizing pigment in fly photoreeeptors. Properties and candidates. Biophys Struct Mech 10:81–92.

    Article  CAS  Google Scholar 

  • Kristensen NP (1975) The phylogeny of hexapod “orders”. A critical review of recent accounts. Z Zool Syst Evolutionsforsch 13:1–44.

    Article  Google Scholar 

  • Kühne W (1878) On the photochemistry of the retina and on visual purple. Macmillan, London.

    Google Scholar 

  • Liu RSH (1982) Synthetic and structural studies of visual pigments. In: Britton G, Goodwin TW (eds) Carotenoid chemistry and biochemistry. Pergamon, Oxford New York, pp 253–264.

    Google Scholar 

  • Morton RA (1944) Chemical aspects of the visual process. Nature (London) 153:69–71.

    Article  CAS  Google Scholar 

  • Nelson R, DeRiel JK, Kropf A (1970) 13-desmethyl rhodopsin and 13-desmethyl isorhodopsin visual pigment analogues. Proc Natl Acad Sci USA 66:531–538.

    Article  PubMed  CAS  Google Scholar 

  • O’Tousa JE, Baehr W, Martin RL, Hirsh J, Pak WL, Applebury ML (1985) The Drosophila ninaE gene encodes an opsin. Cell 40:839–850.

    Article  PubMed  Google Scholar 

  • Ovchinnikov YA (1982) Rhodopsin and bacteriorhodopsin: structure-function relationships. FEBS Lett 148:179–189.

    Article  PubMed  CAS  Google Scholar 

  • Paul R (1981) Neue Aspekte der spektralen Empfindlichkeit von Calliphora erythrocephala, gewonnen durch Fourier-interferometrische Stimulation (FIS). Diss, Univ München.

    Google Scholar 

  • Paulsen R, Schwemer J (1972) Studies on the insect visual pigment sensitive to ultraviolet light: retinal as the chromophoric group. Biochim Biophys Acta 283:520–529.

    Article  PubMed  CAS  Google Scholar 

  • Ross HH (1965) A textbook of entomology, 3rd edn. Sidney, New York London.

    Google Scholar 

  • Seki T, Fujishita S, Ito M, Matsuoka N, Kobayashi C, Tsukida K (1986) A fly, Drosophila melanogaster, forms 11-cis 3-hydroxyretinal in the dark. Vision Res 26:255–258.

    Article  PubMed  CAS  Google Scholar 

  • Shichi H (1983) Biochemistry of vision. Academic Press Orlando.

    Google Scholar 

  • Smakman JGJ, Stavenga DG (1986) Spectral sensitivity of blowfly photoreeeptors: Dependence on waveguide effects and pigment concentration. Vision Res 26:1019–1025.

    Article  PubMed  CAS  Google Scholar 

  • Stark WS, Ivanyshyn AM, Greenberg RM (1977) Sensitivity and photopigments of R1–6, a two peaked photoreceptor in Drosophila, Calliphora and Musca. J Comp Physiol A 121:289–305.

    Article  CAS  Google Scholar 

  • Stavenga DG, Schwemer J (1984) Visual pigments of invertebrates. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, Oxford New York, pp 11–61.

    Google Scholar 

  • Stryer L (1986) The cyclic GMP cascade of vision. Ann Rev Neurosci 9:87–119.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Makino-Tusaka M, Eguchi E (1984) 3-dehydroretinal (Vitamin A2 aldehyde) in crayfish eye. Vision Res 24:783–787.

    Article  PubMed  CAS  Google Scholar 

  • Tanimura T, Isono K, Tsukahara Y (1986) 3-Hydroxyretinal as a chromophore of Drosophila melanogaster visual pigment analyzed by high pressure liquid chromatography. Photochem Photobiol 43:225–228.

    Article  CAS  Google Scholar 

  • Tillyard RJ (1926) Kansas Permian insects. VII. The order Mecoptera. Am J Sci 11:133–164.

    Article  Google Scholar 

  • Vogt K (1983) Is the fly visual pigment a rhodopsin? Z Naturforsch 38c:329–333.

    CAS  Google Scholar 

  • Vogt K, (1984a) The chromophore of the visual pigment in some insect orders. Z Naturforsch 39c:196–197.

    Google Scholar 

  • Vogt K (1984b) Zur Verteilung von Rhodopsin und Xanthopsin bei Insekten. Verh Dtsch Zool Ges 77:258.

    Google Scholar 

  • Vogt K (1987) Chromophores of insect visual pigments. Photobiochem Photobiophys Suppl:273-296.

    Google Scholar 

  • Vogt K, Kirschfeld K (1982) Die Quantenausbeute der Energieübertragung in Photorezeptoren von Fliegen. Verh Dtsch Zool Ges 75:337.

    Google Scholar 

  • Vogt K, Kirschfeld K (1983a) C40-Carotinoide in Fliegenaugen. Verh Dtsch Zool Ges 1983, 330.

    Google Scholar 

  • Vogt K, Kirschfeld K (1983b) Sensitizing pigment in the fly. Biophys Struct Mech 9:319–328.

    Article  CAS  Google Scholar 

  • Vogt K, Kirschfeld K (1984) Chemical identity of the chromophores of fly visual pigment. Naturwissenschaften 71:211–213.

    Article  CAS  Google Scholar 

  • Wald G (1934) Carotenoids and the vitamin A cycle in vision. Nature (London) 134:65.

    Article  CAS  Google Scholar 

  • Wald G (1936) Carotenoids and the visual cycle. J Gen Physiol 19:351–357.

    Article  Google Scholar 

  • Wald G (1939) On the distribution of vitamins A1 and A2 J Gen Physiol 22:391–415.

    Article  PubMed  CAS  Google Scholar 

  • Wald G (1968) Molecular Basis of visual excitation. Science 162:230–239.

    Article  PubMed  CAS  Google Scholar 

  • Weber H (1954) Grundriss der Insektenkunde. Fischer, Stuttgart.

    Google Scholar 

  • Zuker CS, Cowman AF, Rubin GM (1985) Isolation and structure of a rhodopsin gene from Drosophila melanogaster. Cell 40:851–858.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vogt, K. (1989). Distribution of Insect Visual Chromophores: Functional and Phylogenetic Aspects. In: Stavenga, D.G., Hardie, R.C. (eds) Facets of Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74082-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74082-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74084-8

  • Online ISBN: 978-3-642-74082-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics