Fourier Transform Infrared Spectroscopy

Part of the Springer Series in Wood Science book series (SSWOO)


Since the early 1950s, IR spectroscopy has been a routine analytical tool for lignin chemists. In the past, spectra were recorded using the so-called dispersive technique, i.e., with grating-type or prism instruments. In the last decade, Fourier transform infrared (FTIR) spectrometers have become increasingly available for routine laboratory work.


Fourier Transform Infrared Spectroscopy Partial Little Square Diffuse Reflectance Chromated Copper Arsenate Coniferyl Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abott TP, Palmer DM, Gordon SH, Bagby MO (1988) Solid state analysis of plant polymers by FTIR. J Wood Chem Technol 8: 351–357CrossRefGoogle Scholar
  2. Antoon MK, D’Esposito L, Koenig JL (1979) Factor analysis applied to Fourier transform infrared spectra. Appl Spectrosc 33: 351 - 357CrossRefGoogle Scholar
  3. Bartick EG (1985) Microscopy/infrared spectroscopy for routine sample size. Appl Spectrosc 39: 885–890CrossRefGoogle Scholar
  4. Beebe KR, Kowalski BR (1987) An introduction to multivariate calibration and analysis. Anal Chem 59: 1007A–1017ACrossRefGoogle Scholar
  5. Bell RJ (1972) Introductory Fourier transform spectroscopy. Academic Press, New York, 382 ppGoogle Scholar
  6. Berben SA, Rademacher JP, Sell LO, Easty DB (1987) Estimation of lignin in wood pulp by diffuse reflectance Fourier-transform infrared spectrometry. Tappi J 70 (11): 129–133Google Scholar
  7. Birkett M, Gambino M, Meyer JH, Egers D (1989) Estimation of kappa number of pulps by near-infrared spectroscopy. Tappi J 72 (9): 193–197Google Scholar
  8. Bracewell R (1965) The Fourier transformation and its applications. McGraw-Hill, New York, 381 ppGoogle Scholar
  9. Cameron DG, Moffatt DJ (1984) Deconvolution, derivation, and smoothing of spectra using Fourier transforms. Test Eval 76: 83Google Scholar
  10. Chang H-m, Sarkanen KV (1973) Species variation in lignins. Effect of species on the rate of kraft delignification. Tappi 56: 132–134Google Scholar
  11. Chum HL, Ratcliff, Schroeder HA, Sopher DW (1984) Electrochemistry of biomass-derived materials. Characterization, fractionation, and reductive electrolysis of ethanol-extracted explosively depressurized aspen lignin. J Wood Chem Technol 4: 505–532CrossRefGoogle Scholar
  12. Compton DAC, Young JR, Kollar RG, Mooney JR, Grasselli JG (1987) In: McClure GL (ed) Computerized quantitative infrared analysis. ASTM, Philadelphia, 36–57CrossRefGoogle Scholar
  13. Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19: 297–301CrossRefGoogle Scholar
  14. Faix O (1986). Investigations on lignin polymer models (DHP’s) by FTIR spectroscopy. Holzforschung 40: 273–280CrossRefGoogle Scholar
  15. Faix O (1987) Quantitative FTIR-spektroskopische Untersuchungen an Ligninen und Ligninmodellsubstanzen. Habilitation Thesis, University of HamburgGoogle Scholar
  16. Faix O (1991) Classification of lignins from different botanical origins by FTIR spectroscopy. Holzforschung 45 (SuppI, Sept): 21–27CrossRefGoogle Scholar
  17. Faix O, Beinhoff O (1988) FTIR spectra of milled wood lignins and lignin polymer models (DHPs) with enhanced resolution obtained by deconvolution. J Wood Chem Technol 8: 505–522CrossRefGoogle Scholar
  18. Faix O, Nemeth K (1988) Monitoring of wood photodegradation by DRIFT-spectroscopy. Holz Roh- Werkst 46: 112CrossRefGoogle Scholar
  19. Faix O, Patt R, Beinhoff O (1987) Grundlagen und Anwendung von FTIR-Spektroskopie bei der Herstellung und Analyse von Zellstoffen. Papier 41:657–663Google Scholar
  20. Faix O, Schweers W (1974) Vergleichende Untersuchungen an Polymermodellen des Lignins (DHPs) verschiedener Zusammensetzungen. 3 Mitt. IR-spektroskopische Untersuchungen. Holzforschung 28: 50–54CrossRefGoogle Scholar
  21. Ferraro JR, Basile LJ (1978) Fourier transform infrared: application to national problems. In: Ferraro JR, Basile LJ (eds) Fourier transform infrared spectroscopy - applications to chemical systems, Vol. 4. Academic Press, New York, 275–302Google Scholar
  22. Ferraro JR, Rein AJ (1985) Application of diffuse reflectance spectroscopy in the far-infrared region. In: Ferraro JR, Basile LJ (eds) Fourier transform infrared spectroscopy - applications to chemical systems, Vol. 4. Academic Press, New York, 244–282Google Scholar
  23. Frank IE, Feikema J, Constantine N, Kowalski BR (1984) Prediction of product quality from spectral data using the partial least squares method. J Chem Inf Comput Sci 24: 20–24CrossRefGoogle Scholar
  24. Fuller MP, Griffiths PR (1980) Infrared microsampling by diffuse reflectance Fourier transform spectrometry. Appl Spectrosc 34: 533–539CrossRefGoogle Scholar
  25. Gillette PC (1983) Factor analysis for separation of pure component spectra from mixture spectra. Anal Chem 55: 630–633CrossRefGoogle Scholar
  26. Gillette PC, Lando JB, Koening JL (1985) A survey of infrared spectral data processing techniques. In: Ferraro JR, Basile LJ (eds) Fourier transform infrared spectroscopy - applications to chemical systems, Vol. 4. Academic Press, New York, 1–47Google Scholar
  27. Graham J A, Grim WM III, Fateley WG (1985) Fourier transform infrared photoacoustic spectroscopy of condensed-phase samples, In: Ferraro JR, Basile LJ (eds) Fourier transform infrared) spectroscopy - applications to chemical systems, Vol. 4. Academic Press, New York, 345–392Google Scholar
  28. Grandmaison JL, Thibault J, Kaliaguine S, Chantal PD (1987) Fourier transform infrared spectrometry and thermogravimetry of partially converted lignocellulosic materials. Anal Chem 59: 2153–2157CrossRefGoogle Scholar
  29. Green DW, Reedy GT (1978) Matrix-isolation studies with Fourier transform infrared. In: Ferraro JR, Basile LJ (eds) Fourier transform infrared spectroscopy - applications to chemical systems, Vol. 1. Academic Press, New York, 1–59Google Scholar
  30. Griffiths PR (1975) Chemical infrared Fourier transform spectroscopy. Wiley, New York, 340 ppGoogle Scholar
  31. Griffiths PR (1983) Fourier transform infrared spectrometry. Science 222: 297–302PubMedCrossRefGoogle Scholar
  32. Griffiths PR, de Haseth JA (1986) Fourier transform infrared spectrometry. Wiley, New York, 672 ppGoogle Scholar
  33. Harbour JR, Hopper MA, Marchessault RH, Dobbin CJ, Anczurowski E (1985) Photoacoustic spectroscopy of cellulose, paper and wood. J Pulp Pap Sci 11: J42–J47Google Scholar
  34. Hauser M, Oelichmann J (1988) A critical comparison of solid sample preparation techniques in infrared spectroscopy. Microchim Acta (Wien), Spec. Issue, 1: 39–43CrossRefGoogle Scholar
  35. Hergert HL (1971) Infared spectra. In: Sarkanen KV, Ludwig CH (eds) Lignins. Occurrence, formation, structure and reactions. Wiley-Interscience, New York, 267–293Google Scholar
  36. Hirschfeld T (1987) In: McClure GL (ed) Computerized quantitative infrared analysis. ASTM, Philadelphia, 169–179CrossRefGoogle Scholar
  37. Horlick G (1968) Introduction to Fourier transform spectroscopy. Appl Spectrosc 22: 617–626CrossRefGoogle Scholar
  38. Kawamura L, Higuchi T (1964a) Comparative studies of milled wood lignins from different taxonomical origins by infrared spectroscopy. In: Grenoble Symposium 1964, Chimie et biochimie de la lignine, de la cellulose et des hemicelluloses. Les Imprimeries Reunies de Chambery, Chambery, 439–456Google Scholar
  39. Kawamura I, Higuchi T (1964b) Studies on the properties of lignins of plants in various taxonomical positions II. On the I.R. absorption spectra of lignins. Mokuzai Gakkaishi 10: 200–206Google Scholar
  40. Kawamura I, Shinoda Y, Nonomura S (1974) The comparison of relative intensities of IR absorption bands of MWL of various woods from tropical and temperate zones. Mokuzai Gakkaishi 20: 15–20Google Scholar
  41. Kawamura I, Shinoda Y, Ai TV, Tanada T (1977) Chemical properties of lignin of Eyrthrina wood. Mokuzai Gakkaishi 23: 400–404Google Scholar
  42. Koenig JL (1981) Fourier transform infrared spectroscopy of chemical systems. Acc Chem Res 15: 171–178CrossRefGoogle Scholar
  43. Krishnan K (1988) Characterization of semiconductor silicon using the FT-TR microsampling techniques. In: Messerschmidt RG, Harthcock MA (eds) Infrared microspectroscopy: theory and applications. Marcel Dekker, New York, 139–151Google Scholar
  44. Kuo MI, McClelland JF, Luo S, Chien PL, Walker RD, Hse CY (1988) Applications of infrared photoacoustic spectroscopy for wood samples. Wood Fiber Sci 20: 132–145Google Scholar
  45. Lai Y-Z, Sarkanen KV (1975) Structrual variation in dehydrogenation polymers of coniferyl alcohol. Cellul Chem Technol 9:239–245Google Scholar
  46. Mackenzie MW (1988) Advances in applied Fourier transform infrared spectroscopy. Wiley, New York, 350 ppGoogle Scholar
  47. Malhotra VM, Jasty S, Mu R (1989) FT-IR spectra of water in microporous KBr pellets and water’s desorption kinetics. Appl Spectrosc 43: 638–645CrossRefGoogle Scholar
  48. Michell AJ (1988a) Note on a technique for obtaining infrared spectra of treated wood surfaces. Wood Fiber Sci 20: 272–276Google Scholar
  49. Michell AJ (1988b) Infrared spectroscopy transformed - new applications in wood and pulping chemistry. Appita 41: 375–380Google Scholar
  50. Michell AJ (1988c) Usefulness of Fourier-transform infrared difference spectroscopy for studying the reactions of wood during pulping. Cellul Chem Technol 22: 105–113Google Scholar
  51. Michell AJ (1988d) Second derivative F.T.-I.R. spectra of celluloses I and II and related mono- and oligosaccharides. Carbohydr Res 173: 185–195CrossRefGoogle Scholar
  52. Michell AJ, Garland CP, Nelson PJ (1989) Diffuse-reflectance infrared Fourier transform (DRIFT) spectroscopic study of bleaching and yellowing of eucalypt cold soda pulp. J Wood Chem Technol 9: 85–103CrossRefGoogle Scholar
  53. Naes T, Martens H (1984) Multivariate calibration II. Chemometric methods. Trends Anal Chem 3: 266–271CrossRefGoogle Scholar
  54. Obst JR (1982) Guaiacyl and syringyl lignin composition in hardwood cell components. Holzforschung 36: 143–152CrossRefGoogle Scholar
  55. Obst JR, McMillan NJ, Blanchette RA, Christensen DJ, Crawford DM, Küster TA, Landucci LL, Faix O, Newman RH, Pettersen RC, Schwandt VH, Weselowsky MF (1989) Proc 5th Int Symp Wood Pulp Chem, Raleigh, NC, Poster Sessions, 289–308, Tappi press, Athanta, GA and Geological Survey of Canada, Bulletin 403 (1991): 123–146Google Scholar
  56. Oelichmann J, Hauser M (1988) Feststoffuntersuchungen in Infrarot-Spektroskopie. Perkin Elmer’s Applied Infrared Spectroscopy, 24, 7700 Überlingen, FRGGoogle Scholar
  57. Osborne BG, Fearn T (1986) Near infrared spectroscopy in food analysis. Langma Scientific and Wiley, New York, 200 ppGoogle Scholar
  58. Ostmeyer JG, Elder TJ, Winandy JE (1989) Spectroscopic analysis of southern pine treated with chromated copper arsenate II. Diffuse-reflectance Fourier-transform infrared spectroscopy (DRIFT). J Wood Chem Technol 9: 105–122CrossRefGoogle Scholar
  59. Owen NL, Thomas DW (1989) Infrared studies of “hard” and “soft” woods. Appl Spectrosc 43: 451–455CrossRefGoogle Scholar
  60. Painter P, Starsinic M, Coleman M (1985) Determination of functional groups in coal by Fourier transform interferometry. In: Ferraro JR, Basile LJ (eds) Fourier transform infrared spectroscopy - applications to chemical systems, Vol. 4. Academic Press, New York, 169–241Google Scholar
  61. Pakdel H, Grandmaison JL, Roy C (1989) Analysis of wood vacuum pyrolysis solid residues by diffuse reflectance infrared Fourier transform spectrometry. Can J Chem 67: 310–314CrossRefGoogle Scholar
  62. Perkins WD (1986) Fourier transform-infrared spectroscopy. Part I. Instrumentation. J Chem Educ 63: A5–A10CrossRefGoogle Scholar
  63. Perkins WD (1987) Fourier transform-infrared spectroscopy. Part II. Advantages of FT-IR. J Chem Educ 64. A269–A271CrossRefGoogle Scholar
  64. Rosencwaig A (1981) Photoacoustics and photoacoustic spectroscopy. Wiley, New York, 324 ppGoogle Scholar
  65. Salud EC, Faix O (1980) The isolation and characterization of lignins of Shorea species. Holzforschung 34:113–121CrossRefGoogle Scholar
  66. Sarkanen KV, Chang H-m, Ericsson B (1967a) Species variation in lignins. Conifer lignins. Tappi 50: 538–587Google Scholar
  67. Sarkanen KV, Chang H-m, Allan GG (1967b) Species variation in lignins. III. Hardwood lignins. Tappi 50: 587–590Google Scholar
  68. Sarkanen KV, Hergert HL (1971) Classification and distribution. In: Sarkanen KV, Ludwig CH (eds) Lignins. Occurrence, formation, structure and reactions. Wiley-Interscience, New York, 43–94Google Scholar
  69. Sarkanen KV, Ludwig CH (1971) Definitions and nomenclature. In: Sarakanen KV, Ludwig CH (eds) Lignins. Occurrence, formation, structure and reactions. Wiley-Interscience, New York, 1–18Google Scholar
  70. Schiering DW, Oelichmann J, Rau A (1988) Prinzipien und Anwendungen der Infrarot- Mikroskopie. Perkin Elmer’s Applied Infrared Spectroscopy, 7700 Überlingen, FRGGoogle Scholar
  71. Schultz TP, Templeton MC, McGinnis GD (1985a) Rapid determination of lignocellulose by diffuse reflectance Fourier transform infrared spectrometry. Anal Chem 57: 2867–2869CrossRefGoogle Scholar
  72. Schultz TP, McGinnis GD, Bertran MS (1985b) Estimation of cellulose crystallinity using Fourier transform-infrared spectroscopy dynamic thermogravimetry. J Wood Chem Technol 5: 543–557CrossRefGoogle Scholar
  73. Schultz TP, Glasser WG (1986) Quantitative structural analysis of lignin by diffuse reflectance Fourier transform infrared spectromety. Holzforschung 40 (Suppl): 37–44CrossRefGoogle Scholar
  74. Schultz TP, Nicholas DD (1987) Fourier transform infrared spectrometry. Detection of incipient brown rot decay in wood. Int Analyst 41: 35–39Google Scholar
  75. Sjöström M, Wold, S, Lindberg W, Persson J-A, Martens H (1983) A multivariate calibration problem in analytical chemistry solved by partial least-squares models in latent variables. Anal Chim Acta 150: 61–70CrossRefGoogle Scholar
  76. Sommer AJ, Lang PL, Miller BS, Katon JE (1988) Application of molecular microspectroscopy to paper chemistry. Prac Spectrosc 6 (Infrared Microspectrosc): 245–258Google Scholar
  77. Sweeney KM (1989) FTIR microscopy of pulp and paper samples. Tappi J 72 (2): 171–174Google Scholar
  78. Wetzel DL (1983) Near-infrared reflectance analysis. Anal Chem 55: 1165A–1176ACrossRefGoogle Scholar
  79. Williams P, Norris K (1987) Near-infrared technology in the agricultural and food industries. Am Assoc of Cereal Chemists, St. Paul, MN, 330 ppGoogle Scholar
  80. Yang PW, Mantsch HH, Baudais F (1986) A critical evaluation of three types of diffuse reflectance infrared accessories. Appl Spectrosc 40: 974–978CrossRefGoogle Scholar
  81. Yasuda T, Sakakibara A (1981) Hydrogenolysis of protolignin in compression wood. V. Isolation of two trimeric compounds with lactone ring. Holzforschung 35: 183–187CrossRefGoogle Scholar
  82. Yeboah SA, Wang S-H, Griffiths PR (1984) Effect of pressure on diffuse reflectance infrared spectra of compressed powders. Appl Spectrosc 38: 259–264CrossRefGoogle Scholar
  83. Zavarin E, Nguyen C, Romero E (1982) Preparation of enzymatically liberated lignin from naturally brown-rotted wood. J Wood Chem Technol 2: 343–37CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • O. Faix

There are no affiliations available

Personalised recommendations