Skip to main content

Experimental Models of Sensorineural Hearing Loss — Effects of Noise and Ototoxic Drugs on Hearing

  • Conference paper
Progress in Sensory Physiology 9

Part of the book series: Progress in Sensory Physiology ((PHYSIOLOGY,volume 9))

Abstract

Sensorineural hearing loss, i.e., the loss of hearing which is caused by pathological processes in the cochlea and consequently in the auditory pathway is the subject of many recent clinical and experimental studies. Increasing noise levels in the environment as well as the increasing occurrence of ototoxic side effects of drugs significantly increase the attention which is paid to the problem of sensorineural hearing loss. Although the experimental studies on the mechanisms of the noise-induced and drug-induced hearing loss can be traced back into the last century, only the last 40 years have seen significant improvement in the understanding of cochlear pathology and pathophysiology. Undoubtedly the progress in pathological studies would not have been possible without the great progress in understanding cochlear ultrastructure and function. New techniques have made possible the investigation of changes in very subtle structures of the auditory receptors, such as stereocilia, and the correlation of these microstructural properties with the responses of single auditory nerve fibers. New insights into the pathological mechanisms have been achieved using intracellular recordings from hair cells. Combined measurements of ionic concentrations in cochlear fluids together with stria-produced potentials have given another dimension to the complex picture of sensorineural hearing loss. Structural and functional changes as a consequence of exposure to noise have also been found in the central part of the auditory pathway.

The author wishes to thank Dr. Donald Robertson and Prof. Charles Edwards for valuable comments on an earlier version of the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson SD, Kemp DT (1979) The evoked cochlear mechanical response in laboratory primates. Arch Otorhinolaryngol 224:47–54

    PubMed  CAS  Google Scholar 

  • Angelborg C, Engström H (1973) The normal organ of Corti. In: Møller AR (ed) Basic mechanisms in hearing. Academic, New York, pp 125–182

    Google Scholar 

  • Angelborg C, Hultcrantz E, Beausang-Linder M (1979) The cochlear blood flow in relation to noise and cervical sympathectomy. Adv Otorhinolaryngol 25:41–48

    PubMed  CAS  Google Scholar 

  • Angelborg C, Larsen HC, Slepecky N (1985) Regional cochlear blood flow studied by observation of microspheres in serial section. Ann Otol Rhinol Laryngol 94: 181–185

    PubMed  CAS  Google Scholar 

  • Anniko M (1978) Reversible and irreversible changes of the stria vascularis. Acta Otolaryngol (Stockh) 85:349

    CAS  Google Scholar 

  • Aran JM (1981) Electrophysiology of cochlear toxicity. In: Matz CJ, Lerner S, Hawkins JE (eds) Aminoglycoside ototoxicity. Little Brown, Chicago, pp 31–50

    Google Scholar 

  • Aran JM, Darrouzet J (1975) Observation of click-evoked compound VIII nerve responses before, during and over seven months after kanamycin treatment in the guinea pig. Acta Otolaryngol (Stockh) 79:24–32

    CAS  Google Scholar 

  • Aran JM, De Sauvage RC (1977) Evolution of CM, SP and AP during ethacrynic acid intoxication in the guinea pig. Acta Otolaryngol (Stockh) 83:153–159

    CAS  Google Scholar 

  • Aran JM, Erre JP, Guilhaume A, Aurousseau C (1982) The comparative ototoxicities of gentamicin, tobramycin and dibekacin in the guinea pig. Acta Otolaryngol (Stockh) 390:1–30

    CAS  Google Scholar 

  • Arehole A, Salvi RS, Saunders SS, Henderson D (1987) Evoked response “forward masking” in chinchillas with temporary hearing loss. Hear Res 2:193–205

    Google Scholar 

  • Ashmore JF, Meech RW (1986) Ionic basis of membrane potential in outer hair cells of guinea pig cochlea. Nature 322:368–371

    PubMed  CAS  Google Scholar 

  • Axelsson A (1968) The vascular anatomy of the cochlea in the guinea pig and in man. Acta Otolaryngol (Stockh) 243:1–134

    Google Scholar 

  • Axelsson A, Vertes D (1982) Histological findings in cochlear vessels after noise. In: Hamernik RP, Henderson D, Salvi R (eds) New perspectives on noise-induced hearing loss. Raven, New York, pp 49–67

    Google Scholar 

  • Axelsson A, Vertes D, Miller J (1980) Immediate noise effects on cochlear vasculature in the guinea pig. Acta Otolaryngol (Stockh) 91:237

    Google Scholar 

  • Babighian G, Moushegian G, Rupert AL (1975) Central auditory fatigue. Audiology 14:72–83

    PubMed  CAS  Google Scholar 

  • Balogh K Jr, Hiraide F, Ishii D (1970) Distribution of radioactive dihydrostreptomycin in the cochlea: an autoradiographic study. Ann Otol Rhinol Laryngol 79:641–652

    PubMed  Google Scholar 

  • Beagley HA (1965 a) Acoustic trauma in the guinea pig: I Electrophysiology and histology. Acta Otolaryngol (Stockh) 60:437–451

    Google Scholar 

  • Beagley HA (1965 b) Acoustic trauma in the guinea pig: II Electron microscopy including the morphology of cell junctions in the organ of Corti. Acta Otolaryngol (Stockh) 60:479–495

    CAS  Google Scholar 

  • Békésy G von (1963) Three experiments concerned with pitch perception. J Acoust Soc Am 35:602–606

    Google Scholar 

  • Benitez LD, Eldredge DH, Templer JW (1972) Temporary threshold shifts in chinchilla: electrophysiological correlates. J Acoust Soc Am 52:1115–1123

    PubMed  CAS  Google Scholar 

  • Berg K (1949) The toxic effect of streptomycin on the eighth cranial nerve. Ann Otol Rhinol Laryngol 58:448–456

    PubMed  CAS  Google Scholar 

  • Blau A (1904) Experimentelle Studien über die Veränderungen im Gehörorgan nach Vergiftung mit Salizylsäuren Natrium. Arch Ohrenheilkd 61:220–233

    Google Scholar 

  • Bock GR, Seifter EJ (1978) Developmental changes of susceptibility to auditory fatigue in young hamsters. Audiology 17:193–203

    PubMed  CAS  Google Scholar 

  • Boer E de, Bouwmeester J (1974) Critical bands and sensorineural hearing loss. Audiology 13:236–259

    PubMed  Google Scholar 

  • Bohne BA (1976a) Mechanisms of noise damage in the inner ear. In: Henderson D, Hamernik RP, Dosanjh DS (eds) Effects of noise in hearing. Raven, New York, pp 41–68

    Google Scholar 

  • Bohne BA (1976b) Hearing of the noise damaged inner ear. In: Hirsh SK, Eldredge DH, Hirsh IJ, Silverman SR (eds) Hearing and Davis: essays honoring Halowell Davis. Washington University Press, St. Louis, pp 85–96

    Google Scholar 

  • Bohne BA, Clark WW (1982) Growth of hearing loss and cochlear lesions with increasing duration of noise exposure. In: Hamernik RP, Henderson D, Salvi R (eds) New perspectives of noise-induced hearing loss. Raven, New York, pp 183–302

    Google Scholar 

  • Bohne BA, Rabbitt KD (1983) Holes in the reticular lamina after noise exposure: implication for continuing damage in the organ of Corti. Hear Res 11:41–53

    PubMed  CAS  Google Scholar 

  • Bohne BA, Yohman L, Grüner M (1987) Cochlear damage following exposure to high-frequency noise. Hear Res 29:251–264

    PubMed  CAS  Google Scholar 

  • Bonding P (1979 a) Critical bandwidth in loudness summation in sensorineural hearing loss. Br J Audiol 13:23–30

    PubMed  CAS  Google Scholar 

  • Bonding P (1979 b) Critical bandwidth in patients with a hearing loss induced by salicylates. Audiology 18:133–144

    PubMed  CAS  Google Scholar 

  • Borg E (1981) Physiological and pathogenic effect of sound. Acta Otolaryngol (Stockh) 381:1–68

    CAS  Google Scholar 

  • Bosher SK (1979) The nature of the negative endocochlear potential produced by anoxia and ethacrynic acid in the rat and guinea pig. J Physiol (Lond) 293:329–345

    CAS  Google Scholar 

  • Bosher SK (1980 a) The nature of the ototoxic actions of ethacrynic acid upon the mammalian endolymph system I. Functional aspects. Acta Otolaryngol (Stockh) 89: 407–418

    CAS  Google Scholar 

  • Bosher SK (1980 b) The nature of the ototoxic actions of ethacrynic acid upon the mammalian endolymph system II. Structural-functional correlates in the stria vascularis. Acta Otolaryngol (Stockh) 90:40–54

    CAS  Google Scholar 

  • Bosher SK, Smith C, Waren RL (1973) The effects of ethacrynic acid upon the cochlear endolymph and stria vascularis. A preliminary report. Acta Otolaryngol (Stockh) 75:184

    CAS  Google Scholar 

  • Brandt JF (1967) Frequency discrimination following exposure to noise. J Acoust Soc Am 41:448–457

    PubMed  CAS  Google Scholar 

  • Brown JJ, Brummett RE, Fox KE, Bendrick TW (1980) Combined effects of noise and kanamycin. Arch Otolaryngol 106:744–750

    PubMed  CAS  Google Scholar 

  • Brummett RE, West B, Traynor J, Manor N (1974) Ototoxic interaction between aminoglycoside antibiotics and diuretics. Toxicol Appl Pharmacol 29:45

    Google Scholar 

  • Brummett RE, Smith CA, Uemo Y, Cameron S, Richter R (1977) The delayed effects of ethacrynic acid on the stria vascularis of the guinea pig. Acta Otolaryngol (Stockh) 83:98

    CAS  Google Scholar 

  • Brummett RE, Fox KE, Bendrick TW, Hirnes DL (1978) Ototoxicity of tobramycin, gentamicin, amikacin and sisomicin in the guinea pig. J Antimicrob Chemother 4:73–83

    PubMed  CAS  Google Scholar 

  • Brummett E, Brown T, Hirnes L (1979) Quantitative relationships of the ototoxic interaction of kanamycin and ethacrynic acid. Arch Otolaryngol 105:240–246

    PubMed  CAS  Google Scholar 

  • Brusilow SW, Gordes E (1973) The mutual independence of the endolymphatic potential and the concentrations of sodium and potassium in endolymph. J Clin Invest 52:2517–2521

    PubMed  CAS  Google Scholar 

  • Canlon B, Schacht J (1983) Acoustic stimulation alters deoxyglucose uptake in the mouse cochlea and inferior colliculus. Hear Res 10:217–226

    PubMed  CAS  Google Scholar 

  • Canlon B, Miller J, Flock Å, Borg E (1987) Pure tone overstimulation changes the micromechanical properties of the inner hair cell stereocilia. Hear Res 30:65–72

    PubMed  CAS  Google Scholar 

  • Carder HM, Miller JD (1971) Temporary threshold shifts produced by noise-exposure of long duration. Trans Am Acad Ophthalmol Otolaryngol 75:1346–1354

    PubMed  CAS  Google Scholar 

  • Carder HM, Miller JD (1972) Temporary threshold shifts from prolonged exposure to noise. J Speech Hear Res 15:603–623

    PubMed  CAS  Google Scholar 

  • Carlier E, Pujol R (1980) Supra-normal sensitivity to ototoxic antibiotic of the developing rat cochlea. Arch Otorhinolaryngol 226: 129–133

    PubMed  CAS  Google Scholar 

  • Chen C-S, Saunders JC (1983) The sensitive period for ototoxicity of kanamycin mice. Arch Otorhinolarygol 238:217–223

    CAS  Google Scholar 

  • Chen C-S, Saunders JC (1984) Effects of kanamycin on cochlear nuclear evoked responses and behavioral responses in C57 BL/68 mice. Exp Neurol 11:461–467

    CAS  Google Scholar 

  • Clark WW, Bohne BA (1978) Animal model for the 4-kHz tonal dip. Ann Otol Rhinol Laryngol 51:1–16

    Google Scholar 

  • Clark WW, Bohne BA, Boettcher FA (1987) Effects of periodic rest on hearing loss cochlear damage following exposure to noise. J Acoust Soc Am 82:1253–1264

    PubMed  CAS  Google Scholar 

  • Coats AC (1978) Human auditory nerve action potentials and brainstem evoked responses. Latency-intensity functions in detection of cochlear and retrocochlear abnormality. Arch Otolaryngol 104:709

    PubMed  CAS  Google Scholar 

  • Coats AC, Martin JL (1977) Human auditory nerve action potentials and brainstem evoked responses. Effects of audiogram shape and lesion location. Arch Otolaryngol 103:605

    PubMed  CAS  Google Scholar 

  • Cody AR, Johnstone BM (1980) Single auditory neuron response during acute acoustic trauma. Hear Res 3:3–16

    PubMed  CAS  Google Scholar 

  • Cody AR, Johnstone BM (1982 a) Temporary threshold shifts modified by binaural acoustic stimulation. Hear Res 6:199–205

    PubMed  CAS  Google Scholar 

  • Cody AR, Johnstone BM (1982b) Reduced temporary and permanent hearing losses with multiple tone exposures. Hear Res 6:291–301

    PubMed  CAS  Google Scholar 

  • Cody AR, Russel IJ (1985) Outer hair cells in the cochlea and noise hearing loss. Nature 315:662–665

    PubMed  CAS  Google Scholar 

  • Coleman JW (1976) Age dependent changes and acoustic trauma in the spiral organ of the guinea pig. Scand Audiol 5:63–68

    Google Scholar 

  • Comis SD, Pickles JD, Osborne MP (1985) Osmium tetroxide postfixation in relation to the linkage and spatial organization of stereocilia in the guinea pig cochlea. J Neurocytol 14:113–130

    PubMed  CAS  Google Scholar 

  • Cook RO, Konishi T, Salt AN, Hamm CW, Labetkin EH, Koo J (1981) Brainstem-evoked responses of guinea pigs exposed to high noise levels in utero. Dev Psychol 15:95–104

    Google Scholar 

  • Dallos P, Cheatham MA (1976) Compound action potential (AP) tuning curves. J Acoust Soc Am 59:591–597

    PubMed  CAS  Google Scholar 

  • Dallos P, Cheatham MA (1977) Analog of two-tone suppression in whole nerve responses. J Acoust Soc Am 62:1048–1051

    PubMed  CAS  Google Scholar 

  • Dallos P, Harris D (1978) Properties of auditory nerve responses in absence of outer hair cells. J Neurophysiol 41:365–383

    PubMed  CAS  Google Scholar 

  • Dallos P, Wang CY (1974) Bioelectric correlates of kanamycin intoxication. Audiology 13:277–289

    PubMed  CAS  Google Scholar 

  • Dallos R, Ryan A, Harris D, McGee T, Özdamar O (1977) Cochlear frequency selectivity in the presence of hair cell damage. In: Evans EF, Wilson JP (eds) Psychophysics and physiology of hearing. Academic, London, pp 249–258

    Google Scholar 

  • Dallos P, Harris D, Relkin E, Cheatham MA (1980) Two-tone suppression and intermodulation distortions in the cochlea: effect of outer hair cell lesion. In: Van den Brink G, Bilsen FA (eds) Psychophysical, physiological and behavioral studies in hearing. Delft, the Netherlands, pp 242–249

    Google Scholar 

  • Dallos P, Santos-Sacchi J, Flock Å (1982) Intracellular recordings from cochlear outer hair cells. Science 218:582–584

    PubMed  CAS  Google Scholar 

  • Darrouzet J, Guilhaume A (1974) Ototoxicity de la kanamycine au jour. Étude expérimentale en microscopie électronique. Rev Laryngolotol Rhinol (Bord) 95:601–621

    CAS  Google Scholar 

  • Davis H, Morgan CT, Hawkins JE, Galambos R, Smith FW (1950) Temporary deafness following exposure to loud tones and noise. Acta Otolaryngol (Stockh) 88:1–57

    CAS  Google Scholar 

  • Davis RR, Brummett RE, Bendrick TW, Hirnes DL (1982) The ototoxic interaction of viomycin, capreomycin and polymyxin B with ethacrynic acid. Acta Otolaryngol (Stockh) 93:211–217

    CAS  Google Scholar 

  • Davis H, Deatherage BH, Rosenblut B, Fernandez C, Kimura R, Smith CA (1958) Modification of cochlear potentials produced by streptomycin poisoning and by extensive venous obstruction. Laryngoscope 68:596

    PubMed  CAS  Google Scholar 

  • Dayal VS, Koksanian A, Mitchell DP (1971) Combined effects of noise and kanamycin. Ann Otol Rhinol Laryngol 80:897–902

    PubMed  CAS  Google Scholar 

  • Desrochers CS, Schacht J (1982) Neomycin concentrations in inner ear tissues and other organs of the guinea pig after chronic drug administration. Acta Otolaryngol (Stockh) 93:233–236

    CAS  Google Scholar 

  • Dodson HC, Bannister LH, Douek EE (1982) The effects of combined gentamicin and white noise on the spiral organ of young guinea pigs. Acta Otolaryngol (Stockh) 94:193–202

    CAS  Google Scholar 

  • Douek E, Bannister LH, Dodson HC, Ashcroft P, Humphries KN (1976) Effects of incubator noise on the cochlea of the newborn. Lancet 20:1110–1113

    Google Scholar 

  • Douek ES, Dodson HC, Bannister LH (1983) The effects of sodium salicylate on the cochlea of guinea pigs. J Laryngol Otol 93:793–799

    Google Scholar 

  • Drescher MJ, Drescher DG, Medina JE (1983) Effects of sound stimulation at several levels on concentration of primary amines, including neurotransmitter candidates, in perilymph of the guinea pig inner ear. J Neurochem 41:309–320

    PubMed  CAS  Google Scholar 

  • Dumas G, Charachon R (1982) Ototoxicity of kanamycin in developing guinea pigs. Acta Otolaryngol (Stockh) 94:203–212

    CAS  Google Scholar 

  • Duvall AJ, Wersäll J (1964) Site of action of streptomycin upon inner ear sensory cell. Acta Otolaryngol (Stockh) 57:581–598

    CAS  Google Scholar 

  • Duvall AJ, Ward WD, Lauhala KE (1974) Stria ultrastructure and vessels transport in acoustic trauma. Ann Otol Rhinol Laryngol 83:498–514

    PubMed  Google Scholar 

  • Eddy LB, Morgan RJ, Carney HC (1976) Hearing loss due to combined effects of noise and sodium salicylate. ISA Trans 15:103–108

    PubMed  CAS  Google Scholar 

  • Eggermont JJ (1976) Electrocochleography. In: Keidel WD, Neff WD (eds) Anatomy, physiology. Springer, Berlin Heidelberg New York, pp 626–705 (Handbook of sensory physiology. Auditory system, vol V/3)

    Google Scholar 

  • Eggermont JJ (1977) Compound action potential tuning curves in normal and pathological human ears. J Acoust Soc Am 62:1247–1251

    PubMed  CAS  Google Scholar 

  • Elliott LL (1975) Temporal and masking phenomena in persons with sensorineural hearing loss. Audiology 14:336–353

    PubMed  CAS  Google Scholar 

  • Engström B (1983) Stereocilia of sensory cells in normal and hearing impaired ears. Scand Audiol [Suppl] 19, pp 1–34

    Google Scholar 

  • Engström H, Ades HW (1960) Effects of high-intensity noise on inner ear sensory epithelia. Acta Otolaryngol (Stockh) 158:219–229

    Google Scholar 

  • Engström H, Ades HW, Bredberg G (1970) Normal structure of the organ of Corti and the effect of noise-induced cochlear damage. In: Wolstenholm GEW, Knight T (eds) Sensorineural hearing loss. Churchill, London, pp 127–152

    Google Scholar 

  • Erlandsson B, Hakånson H, Ivarson A, Nilson P, Wersäll J (1980) Hair cell damage in the guinea pig due to different kinds of noise. Acta Otolaryngol (Stockh) 367:1–43

    CAS  Google Scholar 

  • Estrem SA, Babin RW, Ryu JH (1981) Cisdiammminedichloroplatinum (II) ototoxicity inthe guinea pig. Otolaryngol Head Neck Surg 89:638–645

    PubMed  CAS  Google Scholar 

  • Evans EF (1974) Effects of hypoxia on the tuning of single cochlear nerve fibers. J Physiol (Lond) 238:65–67 p

    Google Scholar 

  • Evans EF (1976) Temporal sensorineural hearing losses and VIIIth nerve changes. In: Henderson D, Hamernik R, Disanjh D, Mills J (eds) Effects of noise on hearing. Raven, New York, pp 199–224

    Google Scholar 

  • Evans EF, Borerwe TA (1982) Ototoxic effects of salicylates on the responses of single cochlear nerve fibers and on cochlear potentials. Br J Audiol 16:101–108

    PubMed  CAS  Google Scholar 

  • Evans EF, Klinke R (1974) Reversible effects of cyanide and furosemide on the tuning of single cochlear fibers. J Physiol (Lond) 242:129–131

    Google Scholar 

  • Evans EF, Klinke R (1982) The effects of intracochlear and systemic furosemide on the properties of single cochlear nerve fibers in the cat. J Physiol (Lond) 331:409–427

    CAS  Google Scholar 

  • Evans EF, Wilson JP, Borerwe TA (1981) Animal models of tinnitus. In: Evered D, Lawrence C (eds) Tinnitus. Pitman, London, pp 217–224

    Google Scholar 

  • Eybalin M, Rebillard G, Jarry T, Cupo A (1987) Effect of noise level on the metenkephalin content of the guinea pig cochlea. Brain Res 418:189–192

    PubMed  CAS  Google Scholar 

  • Falk SA, Cook RO, Haseman JK, Sanders GM (1974) Noise induced inner ear damage in newborn and adult guinea pigs. Laryngoscope 84:444–453

    PubMed  CAS  Google Scholar 

  • Farkashidy J, Black RG, Briant TDR (1963) Effect of kanamycin on the internal ear: electrophysiological and electron microscopic study. Laryngoscope 73:713–727

    PubMed  CAS  Google Scholar 

  • Federspil P, Schätzle W, Tiesler E (1976) Pharmacokinetics and ototoxicity of gentamicin, tobramycin and amikacin. J Infect Dis 134:200

    Google Scholar 

  • Fitzgibbons P, Wightman FL (1982) Temporal resolution in listeners with sensorineural hearing loss. J Acoust Soc Am 72:761–765

    PubMed  CAS  Google Scholar 

  • Fitzgibbons PJ, Gordon-Salant S (1987a) Temporal gap resolution in listeners with high-frequency sensorineural hearing loss. J Acoust Soc Am 81:133–137

    PubMed  CAS  Google Scholar 

  • Fitzgibbons PJ, Gordon-Salant S (1987b) Minimum stimulus levels for temporal gap resolution in listeners with sensorineural hearing loss. J Acoust Soc Am 81:1542–1545

    PubMed  CAS  Google Scholar 

  • Fleischman RW, Standnicki SW, Ethier MF (1975) Ototoxicity of cisdichlorodiammine-platinum (II) in the guinea pig. Toxicol Appl Pharmacol 33:320–332

    PubMed  CAS  Google Scholar 

  • Forge A, Fradis M (1985) Structural abnormalities in the stria vascularis following chronic gentamicin treatment. Hear Res 20:233–244

    PubMed  CAS  Google Scholar 

  • Galambos R, Hecox KE (1978) Clinical applications of the auditory brain stem response. Otolaryngol Clin North Am 11:709

    PubMed  CAS  Google Scholar 

  • Glasberg BR, Moore BCJ (1986) Auditory filter shapes in subjects with unilateral and bilateral cochlear impairments. J Acoust Soc Am 79:1020–1033

    PubMed  CAS  Google Scholar 

  • Glasberg BR, Moore CJ, Bacon SP (1987) Gap detection and masking in hearing-impaired and normal-hearing subjects. J Acoust Soc Am 81:1546–1556

    PubMed  CAS  Google Scholar 

  • Goulios H, Robertson D (1983) Noise induced cochlear damage assessed using electrophysiological and morphological criteria: an examination of the equal energy principle. Hear Res 11:327–341

    PubMed  CAS  Google Scholar 

  • Gradenigo G (1892) Krankheiten des Labyrinths und des Nervus Acusticus. In: Vogel FCW (ed) Handbuch der Ohrenheilkunde IL Schwartze, Leipzig, pp 474–479

    Google Scholar 

  • Hamernik RP, Henderson D, Salvi R (1982) New perspectives on noise-induced hearing loss. Raven, New York

    Google Scholar 

  • Harris DM (1979) Action potential suppression, tuning curves, and threshold: comparison with single fiber data. Hear Res 1:133–154

    PubMed  CAS  Google Scholar 

  • Harrison RV (1981) Rate-versus-intensity functions and related AP responses in normal and pathological guinea pig and human cochleas. J Acoust Soc Am 70:1036–1044

    PubMed  CAS  Google Scholar 

  • Harrison RV, Evans EF (1979) Cochlear fibre responses in guinea pigs with well-determined cochlear lesions. In: Hoke M, De Boer E (eds) Models of the auditory system and related signal processing techniques. Scand Audiol 9:83–92

    Google Scholar 

  • Harrison RV, Aran JM, Erre J-P (1981a) AP tuning curves from normal and pathological human and guinea pig. J Acoust Soc Am 69 (5): 1374–1385

    PubMed  CAS  Google Scholar 

  • Harrison RV, Aran JM, Negrevergne M (1981b) The frequency selectivity of the normal and pathological human cochlea. Arch Otorhinolaryngol 230:221–227

    PubMed  CAS  Google Scholar 

  • Hawkins JE Jr (1950) Cochlear signs of streptomycin intoxication. J Pharmacol Exp Ther 100:38–44

    PubMed  CAS  Google Scholar 

  • Hawkins JE Jr (1967) Vascular patterns of membranous labyrinth. In: Graybiel A (ed) Third symposium on the role of vestibular organs in space exploration. National Aeronautics and Space Administration, Washington DC p 241

    Google Scholar 

  • Hawkins JE Jr (1971) The role of vasoconstriction in noise-induced hearing loss. Ann Otol Rhinol Laryngol 80:903–913

    PubMed  Google Scholar 

  • Hawkins JE Jr (1973) Ototoxic mechanisms: a working hypothesis. Audiology 12: 383–393

    PubMed  Google Scholar 

  • Hawkins JE Jr (1976) Drug ototoxicity. In: Keidel WD, Neff WD (eds) Anatomy, physiology. Springer, Berlin Heidelberg New York, pp 707–748 (Handbook of Sensory Physiology. Auditory system, vol V/3)

    Google Scholar 

  • Hawkins JE Jr (1977) Condition of the inner hair cells after aminoglycoside intoxication. In: Portmann M, Aran JM (eds) Inner ear biology. Paris, Colloques INSERM 68, pp 237–334

    Google Scholar 

  • Hawkins JE Jr, Engström H (1964) Effect of kanamycin on cochlear cytoarchitecture. Acta Otolaryngol (Stockh) 188:100–106

    Google Scholar 

  • Hawkins JE Jr, Johnsson LG (1976) Patterns of sensorineural degeneration in human ears exposed to noise. In: Henderson D, Hamernik RP, Dosanjh DS (eds) Effects of noise on hearing. Raven, New York, pp 91–110

    Google Scholar 

  • Hawkins JE Jr, Lurie MH (1952) The ototoxicity of streptomycin. Ann Otol Rhinol Laryngol 61:789–806

    PubMed  Google Scholar 

  • Hawkins JE Jr, Lurie MH (1953) The ototoxicity of dihydrostreptomycin and neomycin in the cat. Ann Otol Rhinol Laryngol 62:1128–1148

    PubMed  Google Scholar 

  • Hawkins JE Jr, Marques DM, Clark CS, Preston RE (1975) Ototoxic potentiation between ethacrynic acid and aminoglycoside antibiotics in guinea pig. J Acoust Soc Am 57:60

    Google Scholar 

  • Hawkins JE Jr, Stebbins WC, Johnsson LG, Moody DB, Muraski A (1977) The patas monkey as a model for dihydrostreptomycin ototoxicity. Acta Otolaryngol (Stockh) 83:123–129

    Google Scholar 

  • Hayashida T (1985) Distribution of gentamicin in guinea pig’s inner ear revealed by immunohistochemical method. Ear Res Jpn 16:4–8

    Google Scholar 

  • Hayes D, Jerger J (1982) Auditory brainstem response (ABR) to tone-pips: results in normal and hearing-impaired subjects. Scand Audiol 11:133–142

    PubMed  CAS  Google Scholar 

  • Heidland A, Wigand ME (1970) Einfluss hoher Furosemiddosen auf die Gehörfunktion bei Urämie. Klin Wochenschr 48:1052–1056

    PubMed  CAS  Google Scholar 

  • Helson L, Okonkwo E, Anton L (1978) Cis-platinum ototoxicity. Clin Toxicol 13:469–478

    PubMed  CAS  Google Scholar 

  • Henderson D (1969) Temporal summation of acoustic signals by the chinchilla. J Acoust Soc Am 46:474–475

    PubMed  CAS  Google Scholar 

  • Henderson D, Hamernik RP, Dosanjh DS, Mills JH (1976) Effects of noise on kearing. Raven, New York

    Google Scholar 

  • Henry KR (1980) Effects of noise, hypothermia and barbiturate on cochlea electrical activity. Audiology 19:44–56

    PubMed  CAS  Google Scholar 

  • Henry KR (1983) Abnormal auditory development resulting from exposure to ototoxic chemicals, noise and auditory restrictions. In: Romand R (ed) Development of the auditory system and vestibular system. Academic, New York, pp 273–308

    Google Scholar 

  • Hinshaw HC, Feldman WH (1945) Streptomycin in the treatment of clinical tuberculosis: a preliminary report. Proc Mayo Clin 20:313–318

    Google Scholar 

  • Honrubia V, Ward PH (1969) Properties of the summating potential of the guinea pig cochlea. J Acoust Soc Am 45:1443–1450

    PubMed  CAS  Google Scholar 

  • Horn KL, Langley LR, Gates GA (1977) Effect of ethacrynic acid on the stria vascularis. Arch Otorhinolaryngol 103:539

    CAS  Google Scholar 

  • Hultcrantz E (1979) The effect of noise on cochlear blood flow in the conscious rabbit. Acta Physiol Scand 106:29–37

    PubMed  CAS  Google Scholar 

  • Hunter-Duvar IM (1977) Morphology of the normal and the acoustically damaged cochlea. Scan Electron Microsc 2421:428

    Google Scholar 

  • Hunter-Duvar IM, Suzuki M, Mount RJ (1982) Anatomical changes in the organ of Corti after acoustic stimulation. In: Hamernik RP, Henderson D, Salvi R (eds) New perspectives on noise induced hearing loss. Raven, New York, pp 3–22

    Google Scholar 

  • Irwin RJ, Hinchcliff LK, Kemp S (1981) Temporal activity in normal and hearing-impaired listeners. Audiology 20:234–243

    PubMed  CAS  Google Scholar 

  • Iurato S (1961) Submicroscopic structures of the membranous labyrinths. Z Zellforsch 53:259–298

    PubMed  CAS  Google Scholar 

  • Jauhiainen T, Kohonen J, Jauhiainen M (1972) Combined effect of noise and neomycin on the cochlea. Acta Otolaryngol (Stockh) 73:387–390

    CAS  Google Scholar 

  • Jerger JF (1955) Influence of stimulus duration on the pure-tone threshold during recovery from auditory fatigue. J Acoust Soc Am 27:121–124

    Google Scholar 

  • Jerger J, Mauldin L (1978) Prediction of sensorineural hearing level from the brain stem evoked response. Arch Otorhinolaryngol 104:456

    CAS  Google Scholar 

  • Jesteadt W, Bilger RC, Green DM, Patterson JH (1976) Temporal acuity in listeners with sensorineural hearing loss. J Speech Hear Res 19:357–370

    PubMed  CAS  Google Scholar 

  • Jewett OL (1970) Volume conducted potentials in response to auditory stimuli as detected by averaging in the cat. Electroencephalogr Clin Neurophysiol 28:609

    PubMed  CAS  Google Scholar 

  • Johnson AH, Hamilton CH (1970) Kanamycin ototoxicity-possible potentiation by other drugs. South Med J 63:511–513

    PubMed  CAS  Google Scholar 

  • Jones HC (1973) Intrauterine ototoxicity: A case report and review of literature. J Nat Med Ass 65:201–203

    PubMed  CAS  Google Scholar 

  • Johnsson LG, Hawkins JE Jr (1972) Striai atrophy in clinical and experimental deafness. Laryngoscope 82:1105–1125

    PubMed  CAS  Google Scholar 

  • Juhn SK, Rybak LP, Morizono T, Green LP (1981) Pharmacokinetics of furosemide inrelation to the alteration of endocochlear potential. Scand Audiol [Suppl] 14:39–50

    Google Scholar 

  • Kellerhals B (1972) Acoustic trauma and cochlear microcirculation. Adv Otorhinolaryngol 18:91–168

    PubMed  CAS  Google Scholar 

  • Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391

    PubMed  CAS  Google Scholar 

  • Kemp DT (1979) Evidence of mechanical nonlinearity and frequency selective amplification in the cochlea. Arch Otorhinolaryngol 224:37–45

    PubMed  CAS  Google Scholar 

  • Kemp DT (1981) Physiologically active cochlear micromechanics: one source of tinnitus. In: Evered D, Lawrenson G (eds) Tinnitus. Pitman, London, pp 54–81

    Google Scholar 

  • Kemp DT (1982) Cochlear echoes: implications for noise induced hearing loss. In: Hamernik RP, Henderson R, Salvi R (eds) New perspectives on noise-induced hearing loss, pp 189–206

    Google Scholar 

  • Kiang NYS, Moxon EC, Levine RA (1970) Auditory nerve activity in cats with normal and abnormal cochlea. In: Wolstenholme GEW, Knight T (eds) Sensorineural hearing loss. Churchill, London, pp 241–268

    Google Scholar 

  • Kiang NYS, Liberman MC, Levine RA (1976) Auditory nerve activity in cats exposed to ototoxic drugs and high-intensity sounds. Ann Otol Rhinol Laryngol 75:1–17

    Google Scholar 

  • Komune S, Snow JB (1981) Potentiating effects of cisplatin and ethacrynic acid in ototoxicity. Arch Otorhinolaryngol 107:594–597

    CAS  Google Scholar 

  • Konishi T (1979a) Effects of local application of ototoxic antibiotics on cochlear potentials in guinea pigs. Acta Otolaryngol (Stockh) 88:41–46

    CAS  Google Scholar 

  • Konishi T (1979 b) Some observations on negative endocochlear potential during anoxia. Acta Otolaryngol (Stockh) 87:506

    CAS  Google Scholar 

  • Konishi T, Kelsey E, Singleton GT (1967) Negative potential in scala media during early stage of anoxia. Acta Otolaryngol (Stockh) 64:107

    CAS  Google Scholar 

  • Konishi T, Salt AN (1980) Permeability to potassium of the endolymph-perilymph barrier and its possible relation to hair cell function. Exp Brain Res 40:457–463

    PubMed  CAS  Google Scholar 

  • Konishi T, Salt AN, Hamrick PE (1979) Effects of exposure to noise on ion movement in guinea pig cochlea. Hear Res 1:325–342

    PubMed  CAS  Google Scholar 

  • Konishi T, Salt AN, Hamrick PE (1982) Effects of exposure to noise on permeability to potassium of the endolymph-perilymph barrier in guinea pigs. Acta Otolaryngol (Stockh) 94:395–401

    CAS  Google Scholar 

  • Kryter KD (1963) Exposure to steady-state noise and impairment of hearing. J Acoust Soc Am 35:1515–1525

    Google Scholar 

  • Kryter KD, Ward WD, Miller JD, Eldredge DH (1966) Hazardous exposure to intermittent and steady-state noise. J Acoust Soc Am 39:451–464

    PubMed  CAS  Google Scholar 

  • Kusakari J, Ise I, Comegys TH, Thalmann I, Thalmann R (1978) Effect of ethacrynic acid, furosemide and ouabain upon the endolymphatic potential and upon high frequency phosphates of the stria vascularis. Laryngoscope 88:12–37

    PubMed  CAS  Google Scholar 

  • Lambert PR, Palmer PE, Rubel EW (1986) The interaction of noise and aspirin in the chick basilar papilla. Arch Otorhinolaryngol 112:1043–1049

    CAS  Google Scholar 

  • Laurell G, Borg E (1986) Cis-platin ototoxicity in previously noise exposed guinea-pigs. Acta Otorhinolaryngol 101:66–74

    CAS  Google Scholar 

  • Lawrence M, Yantis PS (1957) Individual differences in functional recovery and structural repair following overstimulation of the guinea pig. Ann Otol Rhinol Laryngol 66:595–621

    PubMed  CAS  Google Scholar 

  • Lawrence M, Gonzales G, Hawkins JE Jr (1967) Some physiological factors in noise-induced hearing loss. Am Ind Hyg Assoc J 28:425–430

    PubMed  CAS  Google Scholar 

  • LeDoux E, Thompson M, Iadecola C, Tucker W, Reis J (1983) Local cerebral blood flow increases during auditory and emotional processing in the conscious rat. Science 221:576–578

    PubMed  CAS  Google Scholar 

  • Lenoir M, Pujol R (1980) Sensitive period to acoustic trauma in the rat pup. Histological findings. Acta Otolaryngol (Stockh) 89:317–322

    CAS  Google Scholar 

  • Lerner SA, Matz GS, Hawkins JE Jr (1981) Aminoglycoside ototoxicity. Little Brown, Boston

    Google Scholar 

  • Liberman MC (1984) Single neuron labeling and chronic cochlear pathology I. Threshold shift and characteristic-frequency shift. Hear Res 16:33–41

    PubMed  CAS  Google Scholar 

  • Liberman MC (1987) Chronic ultrastructural changes in acoustic trauma: serial-section reconstruction of stereocilia and cuticular plates. Hear Res 26:65–88

    PubMed  CAS  Google Scholar 

  • Liberman MC, Dodds LW (1984a) Single neuron labeling and chronic cochlear pathology II. Stereocilia damage and alterations of spontaneous discharge rates. Hear Res 16:43–53

    PubMed  CAS  Google Scholar 

  • Liberman MC, Dodds LW (1984b) Single-neuron labeling and chronic cochlea pathology III. Stereocilia damage and alterations of threshold tuning curves. Hear Res 16: 55–74

    PubMed  CAS  Google Scholar 

  • Liberman MC, Dodds LW (1987) Acute ultrastructural changes in acoustic trauma: serial-section reconstruction of stereocilia and cuticular plates. Hear Res 26:45–64

    PubMed  CAS  Google Scholar 

  • Liberman MC, Kiang NYS (1978) Trauma in cats: cochlear pathology and auditory nerve activity. Acta Otolaryngol 358:1–63

    CAS  Google Scholar 

  • Liberman MC, Kiang NYS (1984) Single-neuron and chronic cochlear pathology IV. Stereocilia damage and alterations in rate- and phase-level functions. Hear Res: 16: 75–90

    PubMed  CAS  Google Scholar 

  • Liberman MC, Mulroy MJ (1982) Acute and chronic effects of acoustic trauma: cochlear pathology and auditory nerve pathophysiology. In: Hamernik RP, Henderson D, Salvi R (eds) New perspectives on noise-induced hearing loss. Raven, New York, pp 105–134

    Google Scholar 

  • Lim DJ (1976) Ultrastructural cochlear changes following acoustic hyperStimulation and ototoxicity. Ann Otol Rhinol Laryngol 85:740–751

    PubMed  CAS  Google Scholar 

  • Lim DJ (1980) Cochlear anatomy related to cochlear micromechanics. A review. J Acoust Soc Am 67:1686–1695

    PubMed  CAS  Google Scholar 

  • Lim DJ (1986) Effects of noise and ototoxic drugs at the cellular level in the cochlea. A review. Am J Otolaryngol 7:73–99

    PubMed  CAS  Google Scholar 

  • Lim DJ, Dunn DE (1979) Anatomic correlates of noise induced hearing loss. Otolaryngol Clin North Am 12:493–513

    PubMed  CAS  Google Scholar 

  • Lim DJ, Lane W (1969) Three-dimensional observations of the inner ear with the scanning electron microscope. Trans Am Acad Ophthal Otolaryngol 73:842–872

    CAS  Google Scholar 

  • Lim DJ, Melnick W (1971) Acoustic damage to the cochlea: a scanning and transmission electron microscopic observation. Arch Otorhinolaryngol 94:294–305

    CAS  Google Scholar 

  • Lindeman HH, Bredberg G (1972) Scanning electron microscopy of the organ of Corti after intense stimulation effects on stereocilia and cuticular surface of hair cells. Arch Klin Exp Ohren Nasen Kehlkopf Heilkd 203:1–15

    CAS  Google Scholar 

  • Lipscomb DM, Roettger R (1973) Capillary constriction in cochlear and vestibular tissues during intense noise stimulation. Laryngoscope 83:259–263

    PubMed  CAS  Google Scholar 

  • Lonsbury-Martin BL, Martin GK (1981) Effects of moderately intense sound on auditory sensitivity in rhesus monkeys: behavioral and neural observations. J Neurophysiol 46:563–586

    PubMed  CAS  Google Scholar 

  • Lonsbury-Martin BL, Martin GK, Bohne BA (1987) Repeated TTS exposures in monkeys: alterations in hearing, cochlear structure, and single unit thresholds. J Acoust Soc Am 81:1507–1518

    PubMed  CAS  Google Scholar 

  • Maher JF, Schreiner GE (1965) Studies on ethacrynic acid in patients with refractory edema. Med Internol 62:15–29

    CAS  Google Scholar 

  • Mathog RH, Klein WJ Jr (1969) Ototoxicity of ethacrynic acid and aminoglycoside antibiotics in uremia. N Engl J Med 280:1223–1224

    PubMed  CAS  Google Scholar 

  • Matz CJ, Lerner S, Hawkins JE (eds) (1981) Aminoglycoside ototoxicity. Little Brown, Chicago

    Google Scholar 

  • McCabe PA, Day FL (1965) The effect of aspirin upon auditory sensitivity. Ann Otol Rhinol Laryngol 74:312–325

    PubMed  CAS  Google Scholar 

  • McFadden D, Plattsmier HS (1982) Suprathreshold aftereffects of exposure to intense sounds. In: Hamernik RP, Henderson D, Salvi R, New perspectives on noise induced hearing loss. Raven, New York, pp 347–362

    Google Scholar 

  • McFadden D, Plattsmier HS (1983) Aspirin can potentiate temporary hearing loss induced by intense sounds. Hear Res 9:295–316

    PubMed  CAS  Google Scholar 

  • McFadden D, Wightman FL (1983) Audition: some relations between normal and pathological hearing. Annu Rev Psychol 34:95–128

    PubMed  CAS  Google Scholar 

  • McFadden, Plattsmier HS, Pasanen EG (1984) Aspirin-induced hearing loss as a model of sensorineural hearing loss. Hear Res 16:251–260

    PubMed  CAS  Google Scholar 

  • Melichar I, Syka J (1977) Time course of anoxia-induced K+ concentration changes in the cochlea measured with K+ specific microelectrodes. Pflugers Arch 372:207–213

    PubMed  CAS  Google Scholar 

  • Melichar I, Syka J (1978) The effects of ethacrynic acid upon the potassium concentration in guinea pig cochlear fluids. Hear Res 1:35–41

    PubMed  CAS  Google Scholar 

  • Melichar I, Syka J (1987 a) DC potentials in different cells of the stria vascularis measured in vitro. Hear Res 25:23–33

    PubMed  CAS  Google Scholar 

  • Melichar I, Syka J (1987 b) Electrophysiological measurements of the stria vascularis potentials in vivo. Hear Res 25:35–43

    PubMed  CAS  Google Scholar 

  • Melichar I, Syka J, Úlehlová L (1980) Recovery of the endocochlear potential and the K+ concentrations in the cochlear fluids after acoustic trauma. Hear Res 2:55–63

    PubMed  CAS  Google Scholar 

  • Melnick W (1977) Temporary threshold shifts following 24-hour noise exposure. Ann Otol Rhinol Laryngol 86:821–826

    PubMed  CAS  Google Scholar 

  • Melnick W, Maves SM (1974) Asymptotic threshold shift (ATS) in man from 24 hour exposure to continuous noise. Ann Otol Rhinol Laryngol 83:820–829

    Google Scholar 

  • Meriwether WD, Maugi RJ, Serpick AA (1971) Deafness following standard intravenous doses of ethacrynic acid. JAMA 216:795

    PubMed  CAS  Google Scholar 

  • Miller JD (1974) Effects of noise on people. J Acoust Soc Am 56:729–764

    PubMed  CAS  Google Scholar 

  • Miller J, Canlon B, Flock Å (1985) High intensity noise effects on stereocilia mechanics. Assoc Res Otolaryngol 8:50

    Google Scholar 

  • Mills JH (1973) Threshold shifts produced by exposure to noise in chinchillas with noise-induced hearing losses. J Speech Hear Res 16:700–708

    PubMed  CAS  Google Scholar 

  • Mills JH, Gengel RW, Watson CH, Miller J (1970) Temporary changes of the auditory system due to exposure to noise for one or two days. J Acoust Soc Am 2:524–530

    Google Scholar 

  • Mills JH (1976) Threshold shifts produced by 90 day exposure to noise. In: Henderson D, Hamernik RP, Disanjh OS, Mills JM, Effects of noise on hearing. Raven, New York, pp 265–276

    Google Scholar 

  • Mills JH, Talo SA (1972) Temporary threshold shifts produced by exposure high-frequency noise. J Speech Hear Res 15:624–631

    PubMed  CAS  Google Scholar 

  • Möller K, Blegvad B (1976) Brain stem responses in patients with sensorineural hearing loss. Monaural versus binaural stimulation. The significance of the audiogram configuration. Scand Audiol 5:115

    Google Scholar 

  • Mongan E, Kelly P, Nies K, Porter WW, Paulus HF (1973) Tinnitus as an indication of therapeutic serum salicylate levels. J Am Med Worn Assoc 226:142–145

    CAS  Google Scholar 

  • Moody DB, Stebbins WC, Hawkins JE Jr (1976) Noise-induced hearing loss in the monkey. In: Henderson O, Hamernik RP, Dosanjh DS, Mills JH (eds) Effects of noise on hearing. Raven, New York, pp 309–326

    Google Scholar 

  • Moore BCJ, Glasberg BR (1986) Comparison of frequency selectivity in spontaneous and forward masking for subjects with unilateral cochlear impairments. J Acoust Soc Am 80:93–107

    PubMed  CAS  Google Scholar 

  • Morest DK (1982) Degeneration in the brain following exposure to noise. In: Hamernik RP, Henderson D, Salvi R (eds) New perspectives on noise-induced hearing loss. Raven, New York, pp 87–93

    Google Scholar 

  • Morest D, Bohne BA (1983) Noise-induced degeneration in the brain and representation of inner and outer hair cells. Hear Res 6:61–82

    Google Scholar 

  • Morimitsu T, Matsuo K, Suga F (1965) Behavior of the cochlear blood flow. Ann Otol Rhinol Laryngol 74:22–52

    PubMed  CAS  Google Scholar 

  • Morizono T, Johnstone BM (1975) Ototoxicity of topically applied gentamicin using a statistical analysis of electrophysiological measurements. Acta Otolaryngol (Stockh) 80:389–393

    CAS  Google Scholar 

  • Myers EN, Bernstein JM (1965) Salicylate ototoxicity. Arch Otorhinolaryngol 82: 483–493

    CAS  Google Scholar 

  • Nakai Y (1971) Electron microscopic study of the inner ear after ethacrynic acid intoxication. Pract Otol Rhinol Laryngol 33:366–376

    CAS  Google Scholar 

  • Nakai Y (1977) Combined effect 3′,4′-dideoxykanamycin B and potent diuretics on the cochlea. Laryngoscope 87:1548

    PubMed  CAS  Google Scholar 

  • Nakai Y, Konishi K, Chang KC, Ohashi K, Morisaki N, Minowa Y, Morimoto A (1982) Ototoxicity of the anticancer drug cisplatin. Acta Otolaryngol 93:227–232

    PubMed  CAS  Google Scholar 

  • Nelson DA, Turner CW (1980) Decay of masking and frequency resolution in sensorineural and hearing-impaired listeners. In: Van den Brink G, Bilsen FA (eds) Psycho-acoustical, physiological and behavioral studies in hearing. Delft University Press, The Netherlands

    Google Scholar 

  • Nelson DA, Freyman RL (1986) Psychometric functions for frequency discrimination from listeners with sensorineural hearing loss. J Acoust Soc Am 79:799–805

    PubMed  CAS  Google Scholar 

  • Nelson DA, Freyman RL (1987) Temporal resolution in sensorineural hearing-impaired listeners. J Acoust Soc Am 81:709–720

    PubMed  CAS  Google Scholar 

  • Nielson DW (1982) Asymptotic threshold shifts in the squirrel monkey. In: Hamernik RP, Henderson D, Salvi R (eds) New perspective on noise-induced hearing loss. Raven, New York, pp 303–319

    Google Scholar 

  • Nuttall AL, Marques DM, Lawrence M (1971) Effects of perilymphatic perfusion with neomycin on the cochlear potential in the guinea pig. Acta Otolaryngol (Stockh) 83:393–400

    Google Scholar 

  • Orsulakova A, Schacht J (1981) A biochemical mechanism of the ototoxic interaction between neomycin and ethacrynic acid. Acta Otolaryngol (Stockh) 93:43–48

    Google Scholar 

  • Osako S, Tokimoto T, Matsuura S (1979) Effects of kanamycin on the auditory evoked responses during postnatal development of the hearing of the rat. Acta Otolaryngol (Stockh) 88:359–368

    CAS  Google Scholar 

  • Özdamar O, Dallos P (1976) Input-output functions of cochlear nerve action potential: interpretation in terms of the one population of neurons. J Acoust Soc Am 59:143–147

    PubMed  Google Scholar 

  • Paloheimo S, Thalmann R (1977) Influence of “loop” diuretics upon Na+K+-ATPase and adenylate cyclase of the stria vascularis. Arch Otol Rhinol Laryngol 217:347–359

    CAS  Google Scholar 

  • Patuzzi R, Sellick PM (1983) A comparison between basilar membrane and inner hair cell receptor potential input-output functions in the guinea pig cochlea. J Acoust Soc Am 74:1734–1741

    PubMed  CAS  Google Scholar 

  • Pederson CB (1974) Brief-tone audiometry in persons treated with salicylate. Audiology 13:311–319

    Google Scholar 

  • Perlman HB, Kimura RS (1962) Cochlear blood flow in acoustic trauma. Acta Otolaryngol (Stockh) 54:99–110

    CAS  Google Scholar 

  • Petersen MR, Prosen CA, Moody DB, Stebbins WC (1977) Operant conditioning in the guinea pig. J Exp Anal Behav 27:529–532

    PubMed  CAS  Google Scholar 

  • Pickles JC, Comis SD, Osborne MP (1984) Cross links between stereocilia in the guinea pig organ of Corti and their possible relation to sensory transduction. Hear Res 15:103–112

    PubMed  CAS  Google Scholar 

  • Pickles JO, Osborne MP, Comis SD (1987) Vulnerability of tip links between stereocilia to acoustic trauma in the guinea pig. Hear Res 25:177–183

    Google Scholar 

  • Pike A, Bosher SK (1980) The time course of the striai changes produced by intravenous furosemide. Hear Res 8:79–89

    Google Scholar 

  • Pillay VKG, Schwartz FD, Aimi K, Kark RM (1969) Transient and permanent deafness following treatment with ethacrynic acid in renal failure. Lancet 1:77

    PubMed  CAS  Google Scholar 

  • Popelář J, Syka J (1982) Noise impairment in the guinea pig II. Changes of single unit response in the inferior colliculus. Hear Res 8:273–283

    PubMed  Google Scholar 

  • Popelář J, Syka J, Berndt H (1987) Effect of noise on auditory evoked responses in awake guinea pig. Hear Res 26:239–247

    PubMed  Google Scholar 

  • Popelář J, Syka J, Úlehlová L (1978) Effect of high-frequency sound on cochlear microphonics and activity of inferior colliculus neurons in the guinea pig. Arch Otorhino laryngol 221:115–122

    Google Scholar 

  • Prazma J (1981) Ototoxicity of aminoglycoside antibiotics. In: Brown RD, Daigneault EA (eds) Pharmacology of hearing: experimental and clinical bases. Wiley, New York, pp 153–196

    Google Scholar 

  • Prazma J, Browder JP, Fischer ND (1974) Ethacrynic acid ototoxicity potentiation by kanamycin. Ann Otol Rhinol Laryngol 83:1

    Google Scholar 

  • Prazma J, Thomas WG, Fischer ND, Preslar MJ (1972) Ototoxicity of ethacrynic acid. Arch Otorhinolaryngol 95:448–456

    CAS  Google Scholar 

  • Prazma J, Rodgers GK, Pillsbury HC (1983) Cochlear blood flow. Arch Otorhinolaryngol 109:611–615

    CAS  Google Scholar 

  • Prazma J, Vance SG, Rodgers G (1984) Measurements of the cochlear blood flow-new technique. Hear Res 14:21–28

    PubMed  CAS  Google Scholar 

  • Price GR (1976) Age as a factor in susceptibility to hearing loss: young versus adult ears. J Acoust Soc Am 60:886–892

    PubMed  CAS  Google Scholar 

  • Prosen CA, Petersen MR, Moody DB, Stebbins WC (1977) Auditory thresholds and kanamycin-induced hearing loss in the guinea pig assessed by a positive reinforcement procedure. J Acoust Soc Am 63:559–566

    Google Scholar 

  • Quick CA, Duvall AJ (1970) III. Early changes in the cochlear duct from ethacrynic acid: an electromicroscopic evaluation. Laryngoscope 80:954–965

    PubMed  CAS  Google Scholar 

  • Rajan R, Johnstone BM (1983) Residual effects in monaural temporary threshold shift to pure tones. Hear Res 12:185–197

    PubMed  CAS  Google Scholar 

  • Rarey KE, Ross MD (1982) A survey of the effects of loop diuretics on the zonulae occludentes of the perilymph-endolymph barrier by freeze fracture. Acta Otolaryngol (Stockh) 94:307–316

    CAS  Google Scholar 

  • Robertson D (1976) Correspondence between sharp tuning and two-tone inhibition in primary auditory neurons. Nature 259:477–478

    PubMed  CAS  Google Scholar 

  • Robertson D (1982) Effects of acoustic trauma on stereocilia structure and spiral ganglion cell tuning properties in the guinea pig cochlea. Hear Res 7:55–74

    PubMed  CAS  Google Scholar 

  • Robertson D (1983) Functional significance of dendritic swelling after loud sounds on the guinea pig cochlea. Hear Res 9:263–278

    PubMed  CAS  Google Scholar 

  • Robertson D, Johnstone BM (1979) Aberrant tonotopic organisation in the inner ear damaged by kanamycin. J Acoust Soc Am 66:466

    PubMed  CAS  Google Scholar 

  • Robertson D, Johnstone BM (1980) Acoustic trauma in the guinea pig cochlea, early changes in ultrastructure and neuronal threshold. Hear Res 3:167–179

    PubMed  CAS  Google Scholar 

  • Robertson D, Johnstone BM (1981) Primary auditory neurons: nonlinear responses altered without changes in sharp tuning. J Acoust Soc Am 69:1096–1098

    PubMed  CAS  Google Scholar 

  • Robertson D, Johnstone BM, McGill TJ (1980) Effects of loud tones on the inner ear: a combined electrophysiological and ultrastructural study. Hear Res 2:39–53

    PubMed  CAS  Google Scholar 

  • Romand R (1971) Maturation des potentiels cochlearies dans la periode perinatale chez le chat et chez le cobaye. J Physiol (Paris) 63:763–782

    CAS  Google Scholar 

  • Rosenhamer H (1981) The auditory evoked brainstem electric response (ABR) in cochlear hearing loss. Scand Audiology 13:83–93

    CAS  Google Scholar 

  • Rossi G, Robechi MG, Penna M (1976) Effects of acoustic trauma on Cord’s ganglion. Acta Otolaryngol (Stockh) 81:270–277

    CAS  Google Scholar 

  • Rossi G, Solero P, Cortesina MF (1979) Brainstem electric response audiometry. Value and significance of latency and amplitude in absolute sense and in relation to the auditory threshold. Acta Otolaryngol (Stockh) [Suppl] 364:1–13

    CAS  Google Scholar 

  • Rüedi L (1951) Some animal experimental findings on the functions of the inner ear. Ann Otol Rhinol Laryngol 60:993–1023

    PubMed  Google Scholar 

  • Ruggero MA, Rich NC, Freyman R (1983) Spontaneous and impulsively evoked otoacoustic emissions: indicators of cochlear pathology. Hear Res 10:283–300

    PubMed  CAS  Google Scholar 

  • Russell JJ (1983) The origin of receptor potential in inner hair cell of the mammalian cochlea — evidence for Davis theory. Nature 301:334–336

    PubMed  CAS  Google Scholar 

  • Russell JJ, Sellick PM (1978) Intracellular studies in hair cells in the mammalian cochlea. J Physiol (Lond) 284:261–290

    CAS  Google Scholar 

  • Russell NJ, Fox KE, Brummett RE (1979) Ototoxic effects of the interaction between kanamycin and ethacrynic acid. Acta Otolaryngol (Stockh) 88:369–381

    CAS  Google Scholar 

  • Rutten WLC (1980) Evoked acoustic emissions from within normal and abnormal human ears: comparison with audiometric and electrocochleographic findings. Hear Res 2:263–271

    PubMed  CAS  Google Scholar 

  • Ryan AF, Woolf NK, Bone RC (1980) Ultrastructural correlates of selective outer hair cell destruction following kanamycin intoxication in the chinchilla. Hear Res 3:335–351

    PubMed  CAS  Google Scholar 

  • Rybak LP (1985) Furosemide ototoxicity: clinical and experimental aspects. Laryngoscope 195:38

    Google Scholar 

  • Rybak LP (1986) Ototoxic mechanisms. Neurobiology of hearing. In: Altschuler RA, Hoffman DW, Bobbin RP (eds) The cochlea, Raven, New York, pp 441–453

    Google Scholar 

  • Rybak LP, Morizono T (1982) Effect of furosemide upon endolymph potassium concentration. Hear Res 7:223–231

    PubMed  CAS  Google Scholar 

  • Rybak LP, Whitworth C (1986) Changes in endolymph chloride concentrations following furosemide injection. Hear Res 24:133–136

    PubMed  CAS  Google Scholar 

  • Rybak LP, Green TP, Juhn SK, Morizono T, Mirkin BL (1979) Elimination kinetics of furosemide in perilymph and serum of the chinchilla. Acta Otolaryngol (Stockh) 88:382–387

    CAS  Google Scholar 

  • Sachs MB, Abbas PJ (1974) Rate versus level functions for auditory nerve fibers in cats: tone burst stimuli. J Acoust Soc Am 65:1835–1847

    Google Scholar 

  • Salt AN, Konishi T (1979) Effects of noise on cochlear potential and endolymph potassium concentration recorded with potassium-selective electrodes. Hear Res 1:343–363

    PubMed  CAS  Google Scholar 

  • Salvi RJ (1976) Central components of the temporary threshold shift. In: Henderson D, Hamernik RP, Dosanjh DS, Mills JH (eds) Effects of noise on hearing. Raven, New York, pp 247–260

    Google Scholar 

  • Salvi RJ, Henderson D, Hamernik R (1975) Auditory fatigue: retrocochlear components. Science 190:486–487

    PubMed  CAS  Google Scholar 

  • Salvi RJ, Hamernik RP, Henderson D (1978) Discharge patterns in the cochlear nucleus of the chinchilla following noise induced asymptotic threshold shift. Exp Brain Res 32:301–320

    PubMed  CAS  Google Scholar 

  • Salvi RJ, Henderson D, Hamernik RP (1979) Single auditory nerve fiber and action potential latencies in normal and noise-treated chinchillas. Hear Res 1:237–251

    Google Scholar 

  • Salvi RJ, Perry J, Hamernik RP, Henderson D (1982) Relationship between cochlear pathologies and auditory nerve behavioral responses following acoustic trauma. In: Hamernik RP, Henderson D, Salvi R (eds) New perspectives on noise-induced hearing loss. Raven, New York, pp 165–188

    Google Scholar 

  • Salvi RJ, Hamernik RP, Henderson D (1983) Response patterns of auditory nerve fibers during temporary threshold shift. Hear Res 10:37–67

    PubMed  CAS  Google Scholar 

  • Santi PA, Duvall AJ (1978) Stria vascularis pathology and recovery following noise exposure. Trans Am Acad Ophthalmol Otolaryngol 86:354–361

    Google Scholar 

  • Santi PA, Duvall AJ (1979) Morphological alteration of the stria vascularis after administration of the diuretic bumetanide. Acta Otolaryngol (Stockh) 88:1

    CAS  Google Scholar 

  • Saunders JC, Bock GR (1978) Influence of early auditory trauma on auditory development. In: Gottlieb G (ed) Study on the development of behavior and the nervous system, vol 4. Early influences. Academic, New York, pp 249–287

    Google Scholar 

  • Saunders JC, Chen CS (1982) Sensitive periods of susceptibility of auditory trauma in mammals. Environ Health Perspect 44:63–66

    PubMed  CAS  Google Scholar 

  • Saunders JC, Flock Å (1986) Recovery of threshold shift in hair-cell stereocilia following exposure to intense stimulation. Hear Res 23:233–243

    PubMed  CAS  Google Scholar 

  • Saunders JC, Hirsch KA (1976) Changes in cochlear microphonics sensitivity after priming C57BL/6J mice at various ages for audiogenic seizures. J Comp Physiol Psychol 90:212–220

    PubMed  CAS  Google Scholar 

  • Saunders JC, Dear SP, Schneider ME (1985) The anatomical consequences of acoustic injury. A review and tutorial. J Acoust Soc Am 78:833–860

    PubMed  CAS  Google Scholar 

  • Saunders JC, Canlon B, Flock Å (1986a) Growth of threshold shift in hair-cell stereocilia following overstimulation. Hear Res 23:245–255

    PubMed  CAS  Google Scholar 

  • Saunders JC, Canlon B, Flock Å (1986b) Changes in stereocilia micromechanics following overstimulation in metabolically blocked hair cells. Hear Res 24:217–225

    PubMed  CAS  Google Scholar 

  • Schacht J (1979) Isolation of an aminoglycoside receptor from guinea pig inner ear tissues and kidney. Arch Otol Rhinol Laryngol 224:129–134

    CAS  Google Scholar 

  • Schacht J (1986) Molecular mechanics of drug-induced hearing loss. Hear Res 22:297–304

    PubMed  CAS  Google Scholar 

  • Schacht J, Lodhi S, Weiner ND (1977) Effects of neomycin on polyphosphoinosides in inner ear tissues and monomolecular films. In: Miller MW, Shamoo EA (eds) Membrane Toxicity. Plenum New York, pp 191–208

    Google Scholar 

  • Schmiedt RA (1984) Acoustic injury and the physiology of hearing. J Acoust Soc Am 76:1293–1317

    PubMed  CAS  Google Scholar 

  • Schmiedt RA, Zwislocki JJ (1980) Effects of hair cell lesions on responses of cochlear nerve fibers. II. Single and two-tone intensity functions in relation to tuning curves. J Neurophysiol 43:1390–1405

    PubMed  CAS  Google Scholar 

  • Schmiedt RA, Zwislocki JJ, Hamernik RP (1980) Effect of hair cell lesions on response of cochlear nerve fibers. I. Lesions, tuning curves, two tone inhibition and responses to trapeziodal wave patterns. J Neurophysiol 43:1367–1389

    PubMed  CAS  Google Scholar 

  • Sellick PM, Johnstone BM (1974) Differential effects of ouabain and ethacrynic acid on the labyrinthine potentials. Pflugers Arch 352:339–350

    PubMed  CAS  Google Scholar 

  • Sewell WF (1984) The effects of furosemide on the endocochlear potential and auditory-nerve tuning curves in cats. Hear Res 14:305–314

    PubMed  CAS  Google Scholar 

  • Sharp FR, Ryan AF, Goodwin P, Woolf NK (1981) Increasing intensities of wide band noise increase 14C/2-deoxyglucose uptake in gerbil central auditory structures. Brain Res 230:87–96

    PubMed  CAS  Google Scholar 

  • Siegel JH, Kim DO, Molnar CE (1982) Effects of altering organ of Corti on cochlear distortion products f2 – ft and 2f1 – f2. J Neurophysiol 47:303–328

    PubMed  CAS  Google Scholar 

  • Sikora MA, Morizono T (1983) N1 latency following acute pure-tone trauma. Hear Res 11:93–101

    PubMed  CAS  Google Scholar 

  • Silverstein H, Bernstein JM, Davies DG (1967) Salicylate ototoxicity: a biochemical and electrophysiological study. Ann Otol Rhinol Laryngol 76:118–128

    PubMed  CAS  Google Scholar 

  • Simmons FB, Galambos B, Albriet JP (1960) Serial studies of the onset and progression of drug-induced cochlear damage in cats. Arch Otorhinolaryngol 72:233–239

    CAS  Google Scholar 

  • Sinex DG, Clark WW, Bohne BA (1987) Effects of periodic rest on physiological measures of auditory sensitivity following exposure to noise. J Acoust Soc Am 82:1265–1273

    PubMed  CAS  Google Scholar 

  • Skinner B, Glattke TJ (1977) Electrophysiologic response audiometry: state of the art. J Speech Hear Disord 41:179

    Google Scholar 

  • Slepecky N (1986) Overview of mechanical damage to the inner ear: noise as a tool probe of cochlear function. In: Flock Å, Wersäll J (eds) Cellular mechanisms in hearing. Elsevier, Amsterdam, pp 307–321

    Google Scholar 

  • Slepecky N, Hamernik RP, Henderson D, Coling D (1981) Ultrastructural changes to the cochlea resulting from impulse noise. Arch Otorhinolaryngol 230:273–278

    PubMed  CAS  Google Scholar 

  • Slepecky N, Hamernik RP, Henderson D, Coling D (1982) Correlation of audiometric data with changes in cochlear hair cell stereocilia resulting from impulse noise trauma. Acta Otolaryngol (Stockh) 93:329–340

    CAS  Google Scholar 

  • Smith CA, Lowry OH, Wu Meiling (1954) The electrolytes of the labyrinthine fluids. Laryngoscope 64:141–153

    PubMed  CAS  Google Scholar 

  • Smith DW, Moody DB, Stebbins WC, Norat MA (1987) Effects of outer hair cell loss on the frequency selectivity of the patas monkey auditory system. Hear Res 29:125–138

    PubMed  CAS  Google Scholar 

  • Smoorenburg CF (1972) Combination tones and their origin. J Acoust Soc Am 52:615–632

    Google Scholar 

  • Smoorenburg CF (1980) Effects of temporary threshold shift on combination-tone generation and two-tone suppression. Hear Res 2:347–355

    PubMed  CAS  Google Scholar 

  • Sokoloff L (1977) Relation between physiological function and energy metabolism in the central nervous system. J Neurochem 29:13–26

    PubMed  CAS  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohava M (1977) The 14C deoxyglucose method for the measurements of local cerebral glucose utilisation: theory, procedure and normal values in the conscious and anaesthetized albino rat. J Neurochem 28:197–216

    Google Scholar 

  • Spoendlin H (1971) Primary structural changes in the organ of Corti after acoustic overstimulation. Acta Otolaryngol (Stockh) 71:166–176

    CAS  Google Scholar 

  • Spoendlin H (1975) Retrograde denervation of the cochlear nerve. Acta Otolaryngol (Stockh) 79:266–275

    CAS  Google Scholar 

  • Standnicki SW, Fleischman RW, Schaeppi U (1975) Cis-dichlorodiamine platinum (II) (NSC-119875): hearing loss and other toxic effects in rhesus monkeys. Cancer Treat Rep 59:467–480

    Google Scholar 

  • Starr A (1965) Suppression of single neuron activity in the cochlear nucleus of the cat following sound stimulation. J Neurophysiol 28:850–862

    PubMed  CAS  Google Scholar 

  • Starr A, Livingston RB (1963) Long-lasting nervous system responses to prolonged sound stimulation in waking cats. J Neurophysiol 26:416–431

    PubMed  CAS  Google Scholar 

  • Stebbins WC, Miller JM, Johnsson L-G, Hawkins JE Jr (1969) Ototoxic hearing loss and cochlear pathology in the monkey. Ann Otol Rhinol Laryngol 78:598–602

    Google Scholar 

  • Strauss M, Towfighi J, Lord S, Brown B, Lipton A, Harvey HA (1983) Cis-platinum ototoxicity: clinical experience and temporal bone histopathology. Laryngoscope 93:1554–1559

    PubMed  CAS  Google Scholar 

  • Stupp HF (1970) Untersuchung der Antibiotikaspiegel in den Innenohrflüssigkeiten und ihre Bedeutung für die Spezifische Ototoxizität der Aminoglykosidantibiotika. Acta Otolaryngol (Stockh) 262:85

    Google Scholar 

  • Strelioff D, Flock Å (1984) Stiffness of sensory-cell hair bundles in the isolated guinea pig cochlea. Hear Res 15:19–28

    PubMed  CAS  Google Scholar 

  • Syka J, Melichar I (1981) Comparison of the effects of furosemide and ethacrynic acid upon the cochlear function in the guinea pig. Scand Audiol 14:63–70

    Google Scholar 

  • Syka J, Melichar I (1985) The effect of loop diuretics upon summating potentials in the guinea pig. Hear Res 20:267–273

    PubMed  CAS  Google Scholar 

  • Syka J, Popelář J (1980) Hearing threshold shifts from prolonged exposure to noise in guinea pig. Hear Res 3:205–213

    PubMed  CAS  Google Scholar 

  • Syka J, Popelář J (1982) Noise impairment in the guinea pig. I. Changes in electrical evoked activity along the auditory pathway. Hear Res 8:263–272

    PubMed  CAS  Google Scholar 

  • Syka J, Melichar I, Úlehlová L (1981) Longitudinal distribution of cochlear potentials and the K+ concentration in the endolymph after acoustic trauma. Hear Res 4:287–298

    PubMed  CAS  Google Scholar 

  • Syka J, Syková E, Patuzzi R, Johnstone BM (1987) Acoustic stimulation evokes potassium concentration changes in the organ of Corti in guinea pig. Neuroscience [Suppl] 22:129

    Google Scholar 

  • Takada A, Schacht J (1982) Calcium antagonism and reversibility of gentamicin-induced loss of cochlear microphonics in the guinea pig. Hear Res 8:179–186

    PubMed  CAS  Google Scholar 

  • Takada A, Bledsoe S, Schacht J (1985) An energy-dependent step in aminoglycoside ototoxicity: prevention of gentamicin ototoxicity during reduced endolymphatic potential. Hear Res 19:245–251

    PubMed  CAS  Google Scholar 

  • Tange RA, Conijn EAJG, Van Zeyl LEPM (1983) Differences in the cochlear degeneration pattern in the guinea pig as a result of gentamicin and cis-platin intoxication. Clin Otolaryngol 8:138

    Google Scholar 

  • Thalmann I, Kobayashi T, Thalmann R (1982) Arguments against a mediating role of the adenylate cyclase-cyclic AMP system in the ototoxic action of loop diuretics. Laryngoscope 92:589–593

    PubMed  CAS  Google Scholar 

  • Theopold HM (1977) Comparative surface studies of ototoxic effects of various aminoglycoside antibiotics on the organ of Corti in the guinea pig. Acta Otolaryngol (Stockh) 84:57–64

    CAS  Google Scholar 

  • Tilney LG, Saunders JC, Engelman E, De Roiser DJ (1982) Changes in the organization of actin filaments in the stereocilia of noise-damaged lizzard cochlea. Hear Res 7: 181–197

    PubMed  CAS  Google Scholar 

  • Tran Ba Huy P, Manuel C, Meulemans A, Sterkers O, Amiel C (1981) Pharmacokinetics of gentamicin in perilymph and endolymph of the rat as determined by radioimmunoassay. J Infect Dis 143:476–486

    PubMed  CAS  Google Scholar 

  • Tran Ba Huy P, Manuel C, Meulemans A, Sterkers O, Wassef M, Amiel C (1983) Ethacrynic acid facilitates gentamicin entry into endolymph of the rat. Hear Res 11:191–202

    PubMed  CAS  Google Scholar 

  • Trittipoe WJ (1959) Residual effects at longer preexposure durations. J Acoust Soc Am 31:244

    Google Scholar 

  • Turner CW (1987) Effects of noise and hearing loss upon frequency discrimination. Audiology 26:133–140

    PubMed  CAS  Google Scholar 

  • Úlehlová L (1983) Stria vascularis in acoustic trauma. Arch Otol Rhinol Laryngol 237:133–138

    Google Scholar 

  • Uziel A, Gabrion J, Romand R (1979a) Hair cell degeneration in guinea pigs intoxicated with kanamycin during intrauterine Ufe. Arch Otorhinolaryngol 224:187–191

    PubMed  CAS  Google Scholar 

  • Uziel A, Romand R, Marot M (1979b) Electrophysiological study of the ototoxicity of kanamycin during development in guinea pig. Hear Res 1:203–211

    CAS  Google Scholar 

  • Van Heusden E, Smoorenburg CF (1981a) Eight-nerve action potentials evoked by tone burst in cats before and after inducement of an acute noise trauma. Hear Res 5:1–23

    PubMed  Google Scholar 

  • Van Heusden E, Smoorenburg CF (1981b) Eight-nerve action-potential tuning curves in cats before and after inducement of an acute noise trauma. Hear Res 5:25–48

    PubMed  Google Scholar 

  • Vertes D, Axelsson A, Lipscomb DM (1979) Some vascular effects of noise exposure in the chinchilla cochlea. Acta Otolaryngol (Stockh) 88:47–55

    CAS  Google Scholar 

  • Vertes D, Axelsson A, Miller J, Lidén G (1981) Cochlear vascular and electrophysiological effects in the guinea pig to 4 kHz pure tones of different durations and intensities. Acta Otolaryngol (Stockh) 92:15–24

    CAS  Google Scholar 

  • Vertes D, Axelsson A, Hornstrand C, Nilsson P (1984) The effect of impulse noise on cochlear vessels. Arch Otorhinolaryngol 110:111–115

    CAS  Google Scholar 

  • Voldřich L (1965) The kinetics of streptomycin, kanamycin and neomycin in the inner ear. Acta Otolaryngol (Stockh) 60:243–248

    Google Scholar 

  • Vrabec DP, Cody DTR, Ulrich JA (1965) A study of the relative concentrations of antibiotics in the blood, spinal fluid and perilymph in animals. Ann Otol Rhinol Laryngol 74:688–705

    Google Scholar 

  • Wang CY, Dallos P (1972) Latency of whole nerve action potentials: influence of hair cell normally. J Acoust Soc Am 52:1678–1686

    PubMed  CAS  Google Scholar 

  • Ward WD (1960) Latent and residual effects in temporary threshold shift. J Acoust Soc Am 32:135–137

    Google Scholar 

  • Ward WD (1963) Diplacusis and auditory theory. J Acoust Soc Am 35:1746–1747

    Google Scholar 

  • Ward WD, Duvall AJ (1971) Behavioral and ultrastructural correlates of acoustic trauma. Ann Otol Rhinol Laryngol 80:881–896

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Nakajima R, Oda R, Uno M, Saito T (1971) Experimental study on the transfer of kanamycin to the inner ear fluids. Med J Osaka Univ 21:257–263

    PubMed  CAS  Google Scholar 

  • Wernick JS, Tobias JV (1963) Central factor in pure-tone auditory fatigue. J Acoust Soc Am 35:1967–1971

    Google Scholar 

  • Wersäll J, Hawkins JE Jr (1962) The vestibular sensory epithelia in the cat labyrinth and their reaction in chronic streptomycin intoxication. Acta Otolaryngol (Stockh) 54:1–22

    Google Scholar 

  • Wersäll J, Lundquist PG, Björkroth B (1969) Ototoxicity of gentamicin. J Infect Dis 119:410–416

    PubMed  Google Scholar 

  • Wersäll J, Björkroth B, Flock Å, Lundquist PG (1973) Experiments on ototoxic effects of antibiotics. Adv Otorhinolaryngol 20:14–41

    PubMed  Google Scholar 

  • West BA, Brummett RE, Hirnes DL (1973) Interaction of kanamycin and ethacrynic acid severe cochlear damage in guinea pigs. Arch Otorhinolaryngol 98:32

    CAS  Google Scholar 

  • Wightman FL (1982) Psychoacoustic correlates of hearing loss. In: Hamernik RP, Henderson D, Salvi R (eds) New perspectives on noise induced hearing loss. Raven, New York, pp 375–394

    Google Scholar 

  • Williams JA, Zenner HP, Schacht J (1987) Three molecular steps of aminoglycoside ototoxicity demonstrated in outer hair cells. Hear Res 30:11–18

    PubMed  CAS  Google Scholar 

  • Wilson JP (1986) Otoacoustic emissions and tinnitus. Scand Audiol 25:109–119

    CAS  Google Scholar 

  • Wilson KS, Juhn SK (1970) The effect of ethacrynic acid on perilymph Na and K. Pract Otol Rhinol Laryngol 32:279–282

    CAS  Google Scholar 

  • Wilson JP, Sutton GJ (1981) Acoustic correlates of tonal tinnitus. In: Evered D, Lawrenson G (eds) Tinnitus. Pitman, London pp 82–101

    Google Scholar 

  • Witmaack K (1903) Beiträge zur Kenntnis der Wirkung des Chinins auf das Gehörorgan. Pflugers Arch 95:203–233

    Google Scholar 

  • Witmaak K (1907) Über Schädigung des Gehörs durch Schalleinwirkung. Z Ohrenheilkd 54:37–80

    Google Scholar 

  • Woodford CM, Henderson D, Hamernik RP (1978) Effects of combination of sodium salycilate and noise on the auditory threshold. Ann Otol Rhinol Laryngol 87:117–122

    PubMed  CAS  Google Scholar 

  • Woolf NK, Sharp FR, Davidson TM, Ryan AF (1983) Cochlear and middle ear effects on metabolism in the central auditory pathway during silence: A 2-deoxyglucose study. Brain Res 274:119–127

    PubMed  CAS  Google Scholar 

  • Wright H (1968) The effect of sensorineural hearing loss on threshold-duration functions. J Speech Hear Res 11:842–852

    PubMed  CAS  Google Scholar 

  • Wright CG (1976) Neural damage in the guinea pig cochlea after noise exposure. Acta Otolaryngol (Stockh) 82:82–94

    CAS  Google Scholar 

  • Wright A (1981) Scanning electron microscopy of the human cochlea — the organ of Corti. Arch Otorhinolaryngol 230:11–19

    PubMed  CAS  Google Scholar 

  • Wright A (1984) Dimensions of the cochlear stereocilia in man and the guinea pig. Hear Res 13:89–98

    PubMed  CAS  Google Scholar 

  • Wright CG, Schaefer SD (1982) Inner ear histopathology in patients treated with cis-platinum. Laryngoscope 92:1408–1413

    PubMed  CAS  Google Scholar 

  • Ylikoski J, Wersäll J, Björkroth B (1974) Correlative studies on the cochlear pathology and hearing loss in guinea pigs after intoxication with ototoxic antibiotics. Acta Otolaryngol (Stockh) 326:5–59

    CAS  Google Scholar 

  • Yoshii U (1909) Experimentelle Untersuchungen über die Schädigung des Gehörorganes durch Schalleinwirkung. Z Ohrenheilkd 58:201–251

    Google Scholar 

  • Zurek PM (1981) Spontaneous narrow-band acoustic signals emitted by human ears. J Acoust Soc Am 69:514–523

    PubMed  CAS  Google Scholar 

  • Zurek PM, Clark WW (1981) Narrow-band acoustic signals emitted by chinchilla ear after noise exposure. J Acoust Soc Am 70:446–450

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Syka, J. (1989). Experimental Models of Sensorineural Hearing Loss — Effects of Noise and Ototoxic Drugs on Hearing. In: Autrum, H., Perl, E.R., Schmidt, R.F., Shimazu, H., Willis, W.D., Ottoson, D. (eds) Progress in Sensory Physiology 9. Progress in Sensory Physiology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74058-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74058-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74060-2

  • Online ISBN: 978-3-642-74058-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics