Peptide Siderophores from Pseudomonas

  • Herbert Budzikiewicz
Conference paper


A sufficient supply of Fe ions is essential for all living organisms. But although iron is amongst the most abundant elements making up about 3.5% of the earth crust it is hard to come by for microorganisms. In the original (reducing) atmosphere of the world iron existed in its divalent form and was thus sufficiently soluble, but when the atmosphere became oxidative due to the photosynthetic activity of certain procarionts iron was precipitated as polymeric ferric oxide hydrate. The consequence is that at the physiological pH of 7.4 [Fe3+]max is 8.9. 10-7 g/1, by far too low for survival (the optimum for microorganisms is about 5.10-6 g/1). Therefore, microroganisms did develop intricate chemical systems to make iron available for them. This is achieved by creating a reductive microbiotope or - more commonly - by giving off complexing agents (ref. 1).


Hydrolysis Amide Lysine Anhydride Microbe 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.N. Raymond, G. Müller, and B.F. Matzanke, Complexation of Iron by Siderophores. A Review of Their Solution and Structural Chemistry and Biological Function, Top. Curr. Chem. 123 (1984) 49–102.Google Scholar
  2. 2.
    H. Budzikiewicz, H. Scholl, W. Neuenhaus, G. Pulverer, and H. Korth, Dialkylresorcine aus Pseudomonas aureofaciens, Z. Naturforsch. 35b (1980) 909–910.Google Scholar
  3. 3.
    H. Korth, G. Pulverer, A. Römer, and H. Budzikiewicz, 7-Hydroxytropolon aus Pseudomonas sp., Z. Naturforsch. 36c, (1981) 728–729.Google Scholar
  4. 4.
    K. Gorier, W. Molls, H.U. Siehl, J. Strähle and Ch. Westphal, Struktur einer neuen schwefelhaltigen Tropolonverbindung aus Pseudomonas cepacia, Liebigs Ann. Chem. (1982) 1006–1011.PubMedGoogle Scholar
  5. 6.
    W. Neuenhaus, H. Budzikiewicz, H. Korth, and G. Pulverer, 3-Alkyltetrahydrochinolinderivate aus Pseudomonas, Z. Naturforsch. 34b (1979) 313–315.Google Scholar
  6. 7.
    H. Budzikiewicz, U.Schaller, H. Korth, and G. Pulverer, Alkylchinoline und deren N-Oxide aus Pseudomonas aeruginosa, Monatsh. Chem. 110 (1979) 947–953.CrossRefGoogle Scholar
  7. 8.
    S. Kitumara, K. Hashizume, T. Iida, E. Miyashita, K. Shirahata, and H. Kase, KF8940 (2-n-Heptyl-4-hydroxy- quinoline-N-oxide), a Potent and Selective Inhibitor of 5-Lipoxygenase, Produced by Psedomonas methanica, J. Antibiot. 37 (1986) 1160–1166.Google Scholar
  8. 9.
    A. Römer, H. Scholl, H. Budzikiewicz, H. Korth, and G. Pulverer, Phenazine aus Pseudomonaden, Z. Naturforsch. 36b (1981) 1037–1046.Google Scholar
  9. 10.
    U. Hildebrand, J. Lex, K.Taraz, S. Winkler, W. Ockels, and H. Budzikiewicz, Untersuchungen zum Redox-System Bis- (pyridin-2,6-dicarbothioato)-ferrat(II)/-ferrat(III), Z. Naturforsch 39b (1984) 1607–1613.Google Scholar
  10. 11.
    U. Hildebrand, K.Taraz, H. Budzikiewicz, H. Korth, and G. Pulverer, Dicyano-bis(pyridin-2,6-dicarbothioato)- ferratll/ferrat(III), ein weiteres eisenhaltiges Redox- system aus der Kulturlösung eines Pseudomonas-Stammes, Z.Naturforsch. 40c (1985) 201–207.Google Scholar
  11. 12.
    W. Neuenhaus, H. Budzikiewicz, H. Korth, and G. Pulverer, 8-Hydroxy-4-methoxy-monothiochinaldinsäure, eine weitere Thiosäure aus Pseudomonas, Z. Naturforsch. 35b (1980) 1569–1571.Google Scholar
  12. 13.
    W.L. Parker, M.L. Rathnum, V. Seiner, W.H. Trejo, P.A. Principe, and R.B. Sykes, Cepacin A and Cepacin B, Two New Antibiotics Produced by Pseudomonas cepacia, J. Antibiot. 37 (1984) 431–440.PubMedGoogle Scholar
  13. 14.
    T. Kusumi, I. Ohtani, K. Nishiyama, and H. Kakisawa, Caryonencins, Potent Antibiotics from a Plant Pathogen Pseudomonas caroyphilii, Tetrahedron Lett. 28 (1987) 3981–3984.CrossRefGoogle Scholar
  14. 15.
    S. Winkler, W. Ockels, H. Budzikiewicz, H. Korth, and G. Pulverer, 2-Hydroxy-4-methoxy-5-methylpyridin-N-oxid, ein Al3+ bindender Metabolit von Pseudomonas cepacia, Z. Naturforsch. 41c (1986) 807–808.Google Scholar
  15. 16.
    G.J. Bukovits, N. Mohr, H. Budzikiewicz, H. Korth, and G. Pulverer, 2-Phenylthiazol-Derivate aus Pseudomonas cepacia, Z. Naturforsch. 37b (1982) 877–880.Google Scholar
  16. 17.
    A. Zunnundzhanov, I.A. Bessonova, N.D. Abdullayev, and D.K. Ogai, Stroenie aerugina is Pseudomonas aeruginosa, Khim. prirod. soed. (1987) 553–558.Google Scholar
  17. 18.
    K. Poppe, K. Taraz, and H. Budzikiewicz, Pyoverdine Type Siderohpres from Pseudomonas fluorescens, Tetrahedron 43 (1987) 2261–2272.CrossRefGoogle Scholar
  18. 19.
    G. Briskot, K.Taraz, and H. Budzikiewicz, Siderophore vom Pyoverdin-Typ aus Pseudomonas aeruginosa, Z. Naturforsch. 41c (1985) 497–506.Google Scholar
  19. 20.
    Unpublished results from this laboratory.Google Scholar
  20. 21.
    M. Teintze, M.B. Hossain, C.L. Barnes, J. Leong, and D. van der Helm, Structure of Ferric Pseudobactin, a Siderophore from a Plant Growth Promoting Pseudomonas, Biochem. 20 (1981) 6446–6457.CrossRefGoogle Scholar
  21. 22.
    Ch.-Ch. Yang and J. Leong, Structure of Pseudobactin 7SR1, a Siderophore from a Plant-Deleterious Pseudomonas, Biochem. 23 (1984) 3534–3540.CrossRefGoogle Scholar
  22. 23.
    S. Wendenbaum, P. Demange, A. Dell, J.M. Meyer, and M.A. Abdallah, The Structure of Pyoverdine Pa, the Siderophore of Pseudomonas aeruginosa, Tetrahedron Lett. 24 (1983) 4877–4880.CrossRefGoogle Scholar
  23. 24.
    P. Demange, S. Wendenbaum, A. Bateman, A. Dell, and M.A Abdallah in: G. Winkelmann, D. van der Helm, and J.B. Neilands (Eds.), Ion Transport in Microbes, Plants and Animals, VCH, Weinheim, 1987, p. 167.Google Scholar
  24. 25.
    G. Pulverer, Erregerspektrum und Antibiotikaresistenz, Rhein. Ärztebl. (1972) 118–120.Google Scholar
  25. 26.
    M.N. Schroth and J.G.Hancock, Disease-Suppresive Soil and Root-Colonizing Bacteria, Science 216 (1982) 1376–1381.PubMedCrossRefGoogle Scholar
  26. 27.
    J.W. Kloepper, J. Leong, M. Teintze, and M.N. Schroth, Enhanced Plant Growth by Siderophores Produced by Plant Growth-Promoting Rhizobacteria, Nature 286 (1980) 885–886.CrossRefGoogle Scholar
  27. 28.
    P.E. Powell, G.R. Cline, C.P.P. Reid, and P.J. Szaniszlav, Occurance of Hydroxamate Siderophore Ion Chelators in Soils, Nature 287 (1980) 833–834.CrossRefGoogle Scholar
  28. 29.
    E. Cowling, B. Krahl-Urban, and Ch. Schimansky, Ursachen von Waldschäden - Wissenschaftliche Hypothesen zur Erklärung der Ursachen, österr. Chemie-Zeitschr. 88 (1987) 228–233.Google Scholar
  29. 30.
    Y.S. Cody and D.C. Gross, Characterization of Pyoverdin PSS, the Fluorescent Siderophore Produced by Pseudomonas syringae pv. syringae, Appi. Env. Microbiol., (1987) 928–934.Google Scholar
  30. 31.
    L. Torres, J.E. Pérez-Ortin, V. Tordera, and J.P. Beltrán, Isolation and Characterization of an Fe(II)-Chelating Compound Produced by Pseudomonas syringae, Appi. Microbiol. (1986) 157–160.Google Scholar
  31. 32.
    St.B. Philson and M. Llinâs, Siderochromes from Pseudomonas fluorescens, J. Biol. Chem. 257 (1982) 8081–8085.Google Scholar
  32. 33.
    J.D. Newkirk and F.H. Hulcher, Isolation and Properties of a Fluorescent Pigment from Pseudomonas mildenbergii, Arch. Biochem. Biophys. 134 (1969) 395–400.PubMedCrossRefGoogle Scholar
  33. 34.
    J.S. Buyer, J.M. Wright, and J. Leong, Structure of Pseudobactin A 214, a Siderophore from a Bean-Deleterious Pseudomonas, Biochem. 25 (1986) 5492–5499.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Herbert Budzikiewicz
    • 1
  1. 1.Institut für Organische Chemie der Universität zu KölnKöln 41West Germany

Personalised recommendations