Skip to main content

Approaching Size and Age in Matrix Population Models

  • Conference paper
Size-Structured Populations

Abstract

Matrix projection models are a simple and powerful way to analyze the life cycles of organisms whose demography is determined by size or developmental stage, rather than age. Here I address three problems: (1) choosing between age and size as state variables, (2) using size-classified models as approximations when both age and size are important, and (3) recovering age-specific information from sizeclassified models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alm G (1959) Connection between maturity, size, and age in fishes. Rep Drottningholm Inst Freshwater Res 40:5–145.

    Google Scholar 

  • Anderson RJ, Landis JR (1980) CATANOVA for multidimensional contingency tables: nominal-scale response. Commun Stat Theor Meth A9:1191–1206.

    Google Scholar 

  • Bishop YMM, Fienberg SE, Holland PW (1975) Discrete multivariate analysis: theory and practice. MIT, Cambridge, Mass.

    Google Scholar 

  • Blythe SP, Nisbet RM, Gurney WSC (1984) The dynamics of population models with distributed maturation periods. Theor Popul Biol 25:289–311.

    Article  PubMed  CAS  Google Scholar 

  • Burns BR, Ogden J (1985) The demography of the temperate mangrove [Avicennia marina (Forsk.) Vierh.] at its southern limit in Zew Zealand. Aust J Ecol 10:125–133.

    Article  Google Scholar 

  • Caswell H (1978) A general formula for the sensitivity of population growth rate to changes in life history parameters. Theor Popul Biol 14:215–2320.

    Article  PubMed  CAS  Google Scholar 

  • Caswell H (1982) Stable population structure and reproductive value for populations with complex life cycles. Ecology 63:1223–1231.

    Article  Google Scholar 

  • Caswell H (1983) Phenotypic plasticity in life history traits: demographic effects and evolutionary consequences. Am Zoologist 23:35–46.

    Google Scholar 

  • Caswell H (1984) Optimal life histories and the costs of reproduction: two extensions. J Theor Biol 107:169–172.

    Article  PubMed  CAS  Google Scholar 

  • Caswell H (1985) The evolutionary demography of clonal reproduction. In: Jackson JBC, Buss LW, Cook, RE (eds) Population biology and evolution of clonal organisms. Yale Univ Press.

    Google Scholar 

  • Caswell H (1986) Life cycle models for plants. Lect Math Life Sci 18:171–233.

    Google Scholar 

  • Caswell H (1988) Matrix population models: construction, analysis and interpretation. (in preparation).

    Google Scholar 

  • Caswell H, Koenig H, Resh J, Ross Q (1972) An introduction to systems analysis for ecologists. In: Patten BC (ed) Systems analysis and simulation in ecology, vol 2. Academic Press, New York London.

    Google Scholar 

  • Caswell H, Naiman RJ, Morin R (1984) Evaluating the consequences of reproduction in complex salmonid life cycles. Aquaculture 43:123–134.

    Article  Google Scholar 

  • Coale AJ (1972) The growth and structure of human populations: a mathematical approach. Univ Press, Princeton.

    Google Scholar 

  • Cook RE (1983) Clonal plant populations. Am Sci 71:244–253.

    Google Scholar 

  • Crouse DT, Crowder LB, Caswell H (1987) A stage-based population model for loggerhead sea turtles and implications for conservation. Ecology 68:1412–1423.

    Article  Google Scholar 

  • Fienberg SE (1977) The analysis of cross-classified categorical data. MIT, Cambridge, Mass.

    Google Scholar 

  • Fingleton B (1984) Models of category counts. Univ Press, Cambridge.

    Book  Google Scholar 

  • Goodman LA, Kruskal WH (1954) Measures of association for cross classifications. J Am Stat Assoc 49:732–764.

    Article  Google Scholar 

  • Gray LN, Williams JS (1975) Goodman and Kruskal’s tau b: multiple and partial analogs. Proc Soc Stat Sect Am Stat Assoc 444–448.

    Google Scholar 

  • Gross KL (1981) Predictions of fate from rosette size in four “biennial” plant species: Verbascum thapsus, Oenothera biennis, Daucus carota, and Tragopogon dubius. Oecologia (Berlin) 48:209–213.

    Article  Google Scholar 

  • Hartshorn GS (1975) A matrix model of tree population dynamics. In: Golley FB, Medina E (eds) Tropical ecological systems. Springer, Berlin Heidelberg New York, pp 41–51.

    Google Scholar 

  • Hubbell SP, Werner PA (1979) On measuring the intrinsic rate of increase of populations with heterogeneous life histories. Am Nat 113:277–293.

    Article  Google Scholar 

  • Hughes TP, Connell JH (1987) Population dynamics based on size or age? A reef-coral analysis. Am Nat 129:818–829.

    Article  Google Scholar 

  • Kendall MG, Stuart A (1958) The advanced theory of statistics, vol 1. Hafner, New York.

    Google Scholar 

  • Keyfitz N (1977) Applied mathematical demography. John Wiley & Sons, New York.

    Google Scholar 

  • Lande R (1982a) A quantitative genetic theory of life history evolution. Ecology 63:607–615.

    Article  Google Scholar 

  • Lande R (1982b) Elements of a quantitative genetic model of life history evolution. In: Dingle H, Hegmann JP (eds) Evolution and genetics of life histories. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Law R (1983) A model for the dynamics of a plant population containing individuals classified by age and size. Ecology 64:224–230.

    Article  Google Scholar 

  • Liebetrau AM (1983) Measures of association. Quantitative applications in the social sciences 32. Sage, Beverly Hills.

    Google Scholar 

  • Light RJ, Margolin BH (1971) An analysis of variance for categorical data. J Am Stat Assoc 66:534–544.

    Article  Google Scholar 

  • McGraw JB (1987) Age-and size-specific shoot life histories and shoot population growth in Rhododendron maximum (submitted).

    Google Scholar 

  • Metz JAJ, Diekmann O (1986) The dynamics of physiologically structured populations. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Pinero D, Martinez-Ramos M, Sarukhan J (1984) A population model of Astrocaryum mexicanum and a sensitivity analysis of its finite rate of increase. J Ecol 72:977–991.

    Article  Google Scholar 

  • Potts DC (1983) Evolutionary disequilibrium among indo-pacific corals. Bull Mar Sci 33:619–632.

    Google Scholar 

  • Potts DC (1984) Generation times and the Quaternary evolution of reef-building corals. Paleobiology 10:48–58.

    Google Scholar 

  • Robertson A (1968) The spectrum of genetic variation. In: Lewontin RC (ed) Population biology and evolution. Univ Press, Syracuse.

    Google Scholar 

  • Saether BE, Haagenrud H (1983) Life history of the moose (Alces alces): fecundity rates in relation to age and carcass weight. J Mammal 64:226–232.

    Article  Google Scholar 

  • Werner PA (1975) Prediction of fate from rosette size in teasel (Dipsacus fullonum L.). Oecologia (Berlin) 20:197–201.

    Article  Google Scholar 

  • Zadeh LA (1969) The concepts of system, aggregate, and state in system theory. In: Zadeh LA, Polak E (eds) System theory. McGraw-Hill, New York, pp 3–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caswell, H. (1988). Approaching Size and Age in Matrix Population Models. In: Ebenman, B., Persson, L. (eds) Size-Structured Populations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74001-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74001-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74003-9

  • Online ISBN: 978-3-642-74001-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics